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be. Furthermore, there are other promising 
ventures in various states of development 
such as Flybrain@Stanford4, BrainGazer5 
and FlyCircuit6 that have similar goals, so 
only time will tell. Let the bidding begin!
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can be useful, a full understanding of circuit 
function requires additional types of knowl-
edge, for instance, about the neurotransmit-
ters involved, the electrical properties of 
component neurons and the influence of 
modulatory systems.

Will BrainAligner become the software 
of choice for the community? History sug-
gests that will depend on more than align-
ment quality and speed. BrainAligner is 
freeware, and it is well integrated with the 
V3D and AtlasViewer freeware developed by 
the same group3. Price is therefore not an 
issue, but documentation and technical sup-
port, platform dependence (BrainAligner is  
currently available in Macintosh and Linux 
formats) and the availability of updates could 

Channeling the data deluge
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With vast increases in biological data generation, mechanisms for 
data storage and analysis have become limiting. A data structure, 
semantically typed data hypercubes (SDCubes), that combines 
hierarchical data format version 5 (HDF5) and extensible markup 
language (XML) file formats, now permits the flexible storage, 
annotation and retrieval of large and heterogenous datasets.

Biological research laboratories were once 
occupied by scientists whose main tools of the 
trade were the pipette, lab notebook, calcula-
tor and pen. Twenty-five years of automation 
and feats of engineering have revolutionized 
biology into a data-centric science, the best 
example being certainly the genome proj-
ects whose output is now the foundation 
of essentially all modern biological experi-
ments. These projects were undertaken in a 
relatively few central facilities, which—after 
some negotiation—agreed to release their data 
within one day of collection using standard-
ized formats. Today, most modern labs have 
access to sophisticated data generation and 
analysis systems that routinely generate simi-
lar amounts of data each day, all of which must 
be processed and analyzed to reveal biologi-
cal understanding. In stark contrast to geno
mics, these data are produced locally by many 

individual scientists, but the overall scale and 
heterogeneity of these experimental efforts 
create a barrier to easy standardization: a data 
format that suffices for one lab will very likely 
only partially address the needs of another. 
When experimental design and outcome drive 
the data formats, straightforward standardiza-
tion becomes nearly impossible. This priority 
is correct; scientific achievement should drive 
data formats and not vice versa.

Heterogeneity, however, comes with a con-
siderable cost. Data generated in one lab can-
not be analyzed by researchers in another, and 
data analyzed using one software tool often 
cannot be analyzed with another tool (even in 
a single lab). Reverse-engineering data formats 
is slow, time-consuming, error-prone and cer-
tainly scales poorly with the diversity of experi
ments. At the same time, although scientific  
data formats do not themselves enable discov-

ery, they are a powerful enabling technology. 
Without the Genbank and Protein Data Bank 
(PDB) repositories, much of today’s research 
would be impossible.

Seen in this context, weaning bench sci-
entists from storing their data in randomly 
formatted spreadsheet files seems not only 
useful but scientifically valuable. This issue 
has not been lost on funding agencies such 
as the US National Science Foundation with 
its Office of Cyberinfrastructure, the UK 
Research Councils with their eScience pro-
gram and the European Union, which funds 
several ‘e-Infrastructures’ in its FP7 program 
and recently commissioned a high-level 
expert group to report on the handling of  
scientific data1.

Scientific data formats always involve a 
tradeoff between simplicity and flexibility. 
Some of the most useful formats, for example, 
the comma-separated values (CSV) spread-
sheet or PDB and Genbank files, have a simple, 
line-oriented structure that is easy to process 
without extensive programming. But there are 
limits to these structures that force the use of 
awkward workarounds (for example, splitting 
a PDB file to accommodate more than 99,999 
atoms in a ribosome). In this issue, Millard 
et al.2 show that by leveraging well-established 
computer science tools and high-performance 
computing it is possible to build a simple data 
storage system that can efficiently and flexibly 
manage data coming from high-throughput 
imaging.

One tool they use is the hierarchical data 
format version 5 (HDF5), which works as a 
flexible vessel to efficiently store large arrays 
of numerical data along with textual meta-
data within a single file structure. HDF5 was 
first developed by the US National Center for 
Supercomputing Applications in the early 
1990s as a flexible and efficient file format 
for large numerical datasets arising mainly in 
high-performance computing. An HDF5 file 
provides the flexibility of a file system: a single 
file can hold many different types of data, and 
arbitrary access to data elements within large 
matrices and datasets is supported. HDF5 is 
a sophisticated technology, but many open-
source tools are now available that provide 
easy cross-platform access, making HDF5 a 
tool that can be used easily across scientific 
disciplines. As the needs for data have grown 
across the sciences, so has the readiness to 
accept the complexities of HDF5 for its flex-
ibility and efficiency.

However, HDF5 has only limited capabili-
ties to express nonnumerical information, such 
as metadata and experimental setups. Millard 
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Data standardization linked to the appear-
ance of new data-generation technologies is 
well-trodden ground. The ‘minimum infor-
mation about a microarray experiment’ 
(MIAME)3 was perhaps the most effec-
tive and has been followed by many similar 
efforts for other data types (microarray gene 
expression data (MGED)4, open microscopy 
environment-XML (OME-XML)5, minimial  
information about fluorescence in situ hybrid-
ization and immunocytochemistry experi-
ment (MIFISHIE)6, minimum information 
for biological and biomedical investigations 
(MIBBI)7 and others). Much research in 
computer science has also been expended on 
how complex real-world situations such as 
biological experiments can be expressed in a 
way ‘understandable’ to a computer, in parti
cular through the use of ontologies8. Projects 
such as Taverna9, myExperiment10 and Open 
Electronic Health Records Foundation (http://
openehr.org/) use such concepts to provide 
ways of specifying, storing and sharing the 
data processing steps and workflows that 
underpin much biological analysis. However, 
a universal life sciences data format with 
enough flexibility to integrate these complex 
information items while ensuring that any 
system can read and compute on it has not 
been achieved.

et al.2 therefore use another tool, the extensible 
markup language (XML), which has become 
the de facto modern standard for structured 
data interchange. XML files can easily describe 
what experiments have been performed and 
which columns in the numerical data blocks 
of the HDF5 relate to which experimental 
parameters. By pairing an XML with an HDF5 
file, Millard et al.2 create a data structure that 
combines the expressivity of XML with the 
efficiency of HDF5, allowing the heterogeneity 
and flexibility needed to support large, experi-
mental datasets while still retaining a complete 
computer-readable description of experimen-
tal design and structure (Fig. 1).

Millard et al. refer to this mechanism as 
semantically typed data cubes (SDCubes). 
They apply this technique in a high-content 
screening experiment in which several differ-
ent dose-response curves are generated in the 
exploration of phenotypic response of cells to 
several small molecule inhibitors. Although a 
new data storage mechanism by itself does not 
constitute a scientific discovery, the achieve-
ment of Millard et al.2 is that they showed 
how a flexible and self-documented storage 
mechanism can be used in a highly complex 
and evolving biological experiment, and dem-
onstrated how this can support a variety of 
experimental protocols and output data.

Figure 1 | A cartoon representation of data packaging into SDCubes.

SDCubes help fully describe experiments 
and their results in computer-readable fashion. 
What is the next step? At some point, single 
files stored on a local disk by themselves will 
become too cumbersome to use. Jim Gray 
and colleagues have referred to HDF5 and 
similar structured file formats as ‘nascent 
database(s)’11 and have predicted that large 
datasets will be stored in databases, possibly 
based on these file formats, but hosted on 
database servers and accessed through layers  
of software (‘middleware’) that hide their 
complexity from the user—in a concept very 
similar to what is today referred to as ‘cloud 
computing’.

Finally, to make SDCubes heavily used, 
maintenance of open libraries that provide 
write and read access will be critical for the 
community. In our experience, standardiza-
tion is provided not just by a technical speci-
fication, but by good examples, support and 
open-source reference implementations. 
Widespread adoption of a data format will 
also require involvement of the community 
at large before a standard can be finalized. 
With this we can look forward to the day 
when a standardized format for biological 
analytical output becomes linked to shared 
workflows so that real data sharing and 
analysis become possible.
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