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can be useful, a full understanding of circuit
function requires additional types of knowl-
edge, for instance, about the neurotransmit-
ters involved, the electrical properties of
component neurons and the influence of
modulatory systems.

Will BrainAligner become the software
of choice for the community? History sug-
gests that will depend on more than align-
ment quality and speed. BrainAligner is
freeware, and it is well integrated with the
V3D and AtlasViewer freeware developed by
the same group>. Price is therefore not an
issue, but documentation and technical sup-
port, platform dependence (BrainAligner is
currently available in Macintosh and Linux
formats) and the availability of updates could

be. Furthermore, there are other promising
ventures in various states of development
such as Flybrain@Stanford?*, BrainGazer®
and FlyCircuit® that have similar goals, so
only time will tell. Let the bidding begin!
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Channeling the data deluge

Jason R Swedlow, Gianluigi Zanetti & Christoph Best

With vast increases in biological data generation, mechanisms for
data storage and analysis have become limiting. A data structure,
semantically typed data hypercubes (SDCubes), that combines
hierarchical data format version 5 (HDF5) and extensible markup
language (XML) file formats, now permits the flexible storage,
annotation and retrieval of large and heterogenous datasets.

Biological research laboratories were once
occupied by scientists whose main tools of the
trade were the pipette, lab notebook, calcula-
tor and pen. Twenty-five years of automation
and feats of engineering have revolutionized
biology into a data-centric science, the best
example being certainly the genome proj-
ects whose output is now the foundation
of essentially all modern biological experi-
ments. These projects were undertaken in a
relatively few central facilities, which—after
some negotiation—agreed to release their data
within one day of collection using standard-
ized formats. Today, most modern labs have
access to sophisticated data generation and
analysis systems that routinely generate simi-
lar amounts of data each day, all of which must
be processed and analyzed to reveal biologi-
cal understanding. In stark contrast to geno-
mics, these data are produced locally by many

individual scientists, but the overall scale and
heterogeneity of these experimental efforts
create a barrier to easy standardization: a data
format that suffices for one lab will very likely
only partially address the needs of another.
When experimental design and outcome drive
the data formats, straightforward standardiza-
tion becomes nearly impossible. This priority
is correct; scientific achievement should drive
data formats and not vice versa.
Heterogeneity, however, comes with a con-
siderable cost. Data generated in one lab can-
not be analyzed by researchers in another, and
data analyzed using one software tool often
cannot be analyzed with another tool (even in
asingle lab). Reverse-engineering data formats
is slow, time-consuming, error-prone and cer-
tainly scales poorly with the diversity of experi-
ments. At the same time, although scientific
data formats do not themselves enable discov-
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ery, they are a powerful enabling technology.
Without the Genbank and Protein Data Bank
(PDB) repositories, much of today’s research
would be impossible.

Seen in this context, weaning bench sci-
entists from storing their data in randomly
formatted spreadsheet files seems not only
useful but scientifically valuable. This issue
has not been lost on funding agencies such
as the US National Science Foundation with
its Office of Cyberinfrastructure, the UK
Research Councils with their eScience pro-
gram and the European Union, which funds
several ‘e-Infrastructures’ in its FP7 program
and recently commissioned a high-level
expert group to report on the handling of
scientific datal.

Scientific data formats always involve a
tradeoff between simplicity and flexibility.
Some of the most useful formats, for example,
the comma-separated values (CSV) spread-
sheet or PDB and Genbank files, have a simple,
line-oriented structure that is easy to process
without extensive programming. But there are
limits to these structures that force the use of
awkward workarounds (for example, splitting
a PDB file to accommodate more than 99,999
atoms in a ribosome). In this issue, Millard
et al.? show that by leveraging well-established
computer science tools and high-performance
computing it is possible to build a simple data
storage system that can efficiently and flexibly
manage data coming from high-throughput
imaging.

One tool they use is the hierarchical data
format version 5 (HDF5), which works as a
flexible vessel to efficiently store large arrays
of numerical data along with textual meta-
data within a single file structure. HDF5 was
first developed by the US National Center for
Supercomputing Applications in the early
1990s as a flexible and efficient file format
for large numerical datasets arising mainly in
high-performance computing. An HDF5 file
provides the flexibility of a file system: a single
file can hold many different types of data, and
arbitrary access to data elements within large
matrices and datasets is supported. HDF5 is
a sophisticated technology, but many open-
source tools are now available that provide
easy cross-platform access, making HDF5 a
tool that can be used easily across scientific
disciplines. As the needs for data have grown
across the sciences, so has the readiness to
accept the complexities of HDF5 for its flex-
ibility and efficiency.

However, HDF5 has only limited capabili-
ties to express nonnumerical information, such
as metadata and experimental setups. Millard
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Figure 1 | A cartoon representation of data packaging into SDCubes.

et al.? therefore use another tool, the extensible
markup language (XML), which has become
the de facto modern standard for structured
data interchange. XML files can easily describe
what experiments have been performed and
which columns in the numerical data blocks
of the HDF5 relate to which experimental
parameters. By pairing an XML with an HDF5
file, Millard et al.? create a data structure that
combines the expressivity of XML with the
efficiency of HDF5, allowing the heterogeneity
and flexibility needed to support large, experi-
mental datasets while still retaining a complete
computer-readable description of experimen-
tal design and structure (Fig. 1).

Millard et al. refer to this mechanism as
semantically typed data cubes (SDCubes).
They apply this technique in a high-content
screening experiment in which several differ-
ent dose-response curves are generated in the
exploration of phenotypic response of cells to
several small molecule inhibitors. Although a
new data storage mechanism by itself does not
constitute a scientific discovery, the achieve-
ment of Millard et al.? is that they showed
how a flexible and self-documented storage
mechanism can be used in a highly complex
and evolving biological experiment, and dem-
onstrated how this can support a variety of
experimental protocols and output data.

Data standardization linked to the appear-
ance of new data-generation technologies is
well-trodden ground. The ‘minimum infor-
mation about a microarray experiment
(MIAME)? was perhaps the most effec-
tive and has been followed by many similar
efforts for other data types (microarray gene
expression data (MGED)*, open microscopy
environment-XML (OME-XML)>, minimial
information about fluorescence in situ hybrid-
ization and immunocytochemistry experi-
ment (MIFISHIE)®, minimum information
for biological and biomedical investigations
(MIBBI)7 and others). Much research in
computer science has also been expended on
how complex real-world situations such as
biological experiments can be expressed in a
way ‘understandable’ to a computer, in parti-
cular through the use of ontologies®. Projects
such as Taverna’, myExperiment!'? and Open
Electronic Health Records Foundation (http://
openehr.org/) use such concepts to provide
ways of specifying, storing and sharing the
data processing steps and workflows that
underpin much biological analysis. However,
a universal life sciences data format with
enough flexibility to integrate these complex
information items while ensuring that any
system can read and compute on it has not
been achieved.

NEWS AND VIEWS |

SDCubes help fully describe experiments
and their results in computer-readable fashion.
What is the next step? At some point, single
files stored on a local disk by themselves will
become too cumbersome to use. Jim Gray
and colleagues have referred to HDF5 and
similar structured file formats as ‘nascent
database(s)’!! and have predicted that large
datasets will be stored in databases, possibly
based on these file formats, but hosted on
database servers and accessed through layers
of software (‘middleware’) that hide their
complexity from the user—in a concept very
similar to what is today referred to as ‘cloud
computing.

Finally, to make SDCubes heavily used,
maintenance of open libraries that provide
write and read access will be critical for the
community. In our experience, standardiza-
tion is provided not just by a technical speci-
fication, but by good examples, support and
open-source reference implementations.
Widespread adoption of a data format will
also require involvement of the community
at large before a standard can be finalized.
With this we can look forward to the day
when a standardized format for biological
analytical output becomes linked to shared
workflows so that real data sharing and
analysis become possible.
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