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ABSTRACT

We present a technique for using a content-based video labeling
task as a CAPTCHA. Our video CAPTCHAS are generated from
YouTube videos, which contain labels (zags) supplied by the per-
son that uploaded the video. They are graded using a video’s tags,
as well as tags from related videos. In a user study involving 184
participants, we were able to increase the average human success
rate on our video CAPTCHA from roughly 70% to 90%, while
keeping the average success rate of a tag frequency-based attack
fixed at around 13%. Through a different parameterization of the
challenge generation and grading algorithms, we were able to re-
duce the success rate of the same attack to 2%, while still increasing
the human success rate from 70% to 75%. The usability and secu-
rity of our video CAPTCHA appears to be comparable to existing
CAPTCHAs, and a majority of participants (60%) indicated that
they found the video CAPTCHASs more enjoyable than traditional
CAPTCHASs in which distorted text must be transcribed.

Categories and Subject Descriptors

H.5.2 [HCI]: Web-based interaction; D.4.6 [Security and Protec-
tion]: Access Control and Authentication

Keywords

Completely Automated Public Turing test to tell Computers and
Humans Apart (CAPTCHA); Human Interactive Proof (HIP); video
understanding; tagging

1. INTRODUCTION

A Completely Automated Public Turing test to tell Computers
and Humans Apart (CAPTCHA) is a variation of the Turing test
[23], in which an online challenge is used to distinguish humans
from computers. They are commonly used to prevent the abuse of
online services by ensuring that a human is making the request.
One such abuse would be a program creating thousands of free
email accounts and then using them to send SPAM. A number of
hard artificial intelligence problems including natural language pro-
cessing [8], character recognition [3, 4, 22, 25], speech recognition
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[16], and image understanding [5, 6, 11, 21] have been used as the
basis for CAPTCHAs.

Various criteria have been proposed in the literature for evalu-
ating CAPTCHAs [1, 21, 25]. Based on these, we propose the
following set of four desirable properties for a CAPTCHA:

1. Automated: Challenges should be easy to automatically gen-
erate and grade.

2. Open: The underlying database(s) and algorithm(s) used to
generate and grade the challenges should be public. This
property is in accordance with Kerckhoffs’ Principle, which
states that a system should remain secure even if everything
about the system is public knowledge [14].

3. Usable: Challenges should be easily solved in a reasonable
amount of time by humans. Furthermore, challenges should
strive to minimize the effect of a user’s language, physical
location, education, and/or perceptual abilities.

4. Secure: Challenges should be difficult for machines to solve
algorithmically.
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Type 3 words that best describe this video:
dogs costume halloween

([ Submit |

Figure 1: An example of our video CAPTCHA.



The most common type of CAPTCHA requires a user to tran-
scribe distorted characters displayed within a noisy image (such as
in [4]). The algorithms and data used to automatically generate
these challenges are publicly available, but not only do many users
find them frustrating, automated programs have been successful at
defeating them. For example, researchers have developed an attack
against Microsoft’s Hotmail CAPTCHA that yields a 60% success
rate [27]. The need for a new CAPTCHA that is automated, open,
usable, and secure arises.

We present a new type of CAPTCHA, in which a user must
provide three words (tfags) describing a video taken from a public
database (see Figure 1; an online demonstration is also available').
In its simplest form, a challenge is passed if any of the three sub-
mitted tags match any of the author-supplied tags associated with
the video. This challenge is similar to the image labeling game
known as ESP created by von Ahn et. al [26], in which people
are randomly paired up and try to guess a common tag for an im-
age. Our video CAPTCHA is similar to playing a game of ESP
using videos, but where one player’s responses (the ground truth
set) are automatically generated from tags associated with videos
in the database.

Due to the ambiguity of natural language, misspellings by the
authors of the videos, and inconsistencies in tagging behaviors, we
hypothesized that exact matching of author-supplied tags would be
a difficult task. However, in our first user study, the human suc-
cess rate for exact matching of author-supplied tags was 75%. The
goal of this research was to further improve the human success rate
on our video CAPTCHA, while maintaining security against a tag
frequency-based attack, where the three tags estimated to have the
highest frequency (i.e. are associated with the largest number of
videos) are submitted. We explored improving usability by ex-
panding the user-supplied tags and the ground truth tags, as well
as allowing approximate string matching. To maintain security, we
reject tags estimated to have a frequency greater than or equal to a
given rejection threshold.

To test the usability and security of our CAPTCHA, we have
conducted two user studies and simulated a frequency-based attack
against a sample of challenges. Our first user study was used to
explore possible grading functions and to determine the appropri-
ate parameter values for the second user study. In the first user
study, participants were only instructed to tag the videos and their
responses were not graded. However, participants in the second
user study were told whether they had passed or failed the video
CAPTCHAs. For both user studies and the frequency-based attack,
success rates were observed over the space of usability and secu-
rity parameters. In the second user study, with appropriate parame-
ters it was possible to increase human success rates from 70% (ex-
act matching author tags) to 90% while keeping the attack success
rate at around 13%. These success rates are comparable to exist-
ing CAPTCHAs. In addition, we observed that different balances
between security and usability could be achieved by modifying the
generation and grading function parameters.

From our initial investigation, it appears that our vidleo CAPTCHA
is usable and secure. In addition, it is semi-automated (a human
may be needed to ensure that the content is appropriate and the tags
are in a given language), and open (all algorithms and the database
used to generate challenges are publicly available). In the remain-
ing sections of this paper, we outline our data sampling technique,
the definition of our CAPTCHA generation and grading functions,
report results from an attack simulation and two user studies, and
finally conclude and recommend future avenues of research.

'Online at http://cs.rit.edu/~rlaz/dprl.html

2. COLLECTING VIDEO SAMPLES

For our video dataset, we chose to utilize YouTube.com, which
is currently the largest user-generated content video system avail-
able [2]. YouTube currently stores and indexes close to 150 million
videos. Ideally, we would like to randomly sample from this large
database, but this is not possible, as no comprehensive list of videos
is available [19]. There are also restrictions on the number of API
requests allowed per day and the number of results returned per
query.

Randomly generating YouTube video identifiers (IDs) would yield
a true random sample, but collecting a large sample in this fashion
is impractical. YouTube video IDs are 11 characters long with a
character set consisting of lower case letters (a—z), uppercase let-
ters (A—2), numbers (0—-9), dashes (), and underscores (_) for a
total of 64 different characters. Therefore, there are 64 ~ 7.4 x
10" possible IDs. Given that there are approximately 1.5 x 10%
videos on YouTube, the probability of randomly generating a valid
video ID is approximately 2 x 10~ *2. Clearly, this is not a tractable
method for collecting large samples.

A common method used for sampling hidden populations where
direct interaction with participants would be difficult is known as
snowball sampling [10]. An s stage k name snowball sample is
similar to a breadth-first search where a fixed number of children
are selected at random at each node in the search tree. The sampling
procedure is as follows:

1. From the population, pick a random sample of individuals
(Stage 0).

2. Eachindividual in the current stage names k individuals (chil-
dren) at random.

3. Repeat for s stages.

Recently, this sampling technique has been used to sample large so-
cial networks, including YouTube.com [19]. A common criticism
of snowball sampling is that it biases results towards individuals
who are connected to the entry points. Therefore, we chose to use
random walks, which are a form of randomized local search. This
technique has been previously used for sampling video data [12].

One can model YouTube as an undirected, bipartite graph G.
The vertices in the graph consist of two disjoint sets: tags U and
videos V. The edges in the graph are of the form (u, v) and (v, u)
such that w € U and v € V; edges represent associations be-
tween videos and tags. Given the YouTube video-tag graph G, a
maximum walk depth m, and a dictionary D, the algorithm below
returns a nearly random sample in the form of an ordered list P of
video-tags pairs (v, A).

RANDOMWALK(G, m, D)

1. Create an empty list, P « ().

2. Randomly select a walk depth d, where 1 < d < m.
3. Randomly select a starting tag ¢ from dictionary D.
4. Located the tag vertex u corresponding to ¢ in G.

5. While ¢ < d:

(a) Select a random edge (u,v) in G, where v is a video
vertex.

(b) Given the tags A on the video v, append (v, A) to P.

(c) Select a random edge (v, w) in G where w is a tag as-
sociated with video v.

(d) Assign u «— w and increment .

6. Return the list of video-tag pairs P.

In our experiments, we used a maximum depth of 100 (m =
100), to allow walks of reasonable depth, while preventing walks
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Figure 2: Log scale plot of estimated tag frequencies for 86,368
YouTube videos. Tags are listed in increasing frequency along
the x axis, and the y axis shows tag counts.

from becoming stuck in local neighborhoods or connected compo-
nents in the graph. For our dictionary D, we used the English word
list available on most Unix-based computers. We used YouTube
API calls to obtain the video and tag vertices; note that there is
a limit on the number of videos returned for a given tag query (a
maximum of 1000).

Our tag frequency distribution was estimated from a set of 86,368
videos collected from many random walks. We plotted the tags in
increasing order of frequency and observed that the shape of the
curve was exponential (see Figure 2). A small number of tags are
used very frequently, while most others are used comparatively in-
frequently.

3. CHALLENGE GENERATION

Given the YouTube graph (G, a maximum walk depth m, a dic-
tionary D, a tag frequency distribution estimate F', a maximum
number of related tags to add n, and a rejection threshold ¢, the
CAPTCHA generation algorithm below returns a pair (v, GT") con-
taining a video and a set of acceptable ground truth tags.

VIDEOCAPTCHA (G, m, D, F,n,t)

1. A random walk of the video-tag graph G is performed to
maximum depth m using dictionary D to choose a video
and the last (most recent) video v and its tags A are stored:
(v, A) = RANDOMWALK(G, m, D)

2. A list of videos R which are related to video v is obtained
from G. In our case, this was performed using the YouTube
API, which returns at most 100 video-tags pairs: (v;, A;)

3. Generate up to m additional tags from related videos:
E = RELATEDTAGS(A, R, n)

4. Using the tag frequency distribution estimate F', remove tags
with a frequency greater than or equal to ¢
GT = REJECTFREQUENTTAGS(A U E, F\ t)

5. Return the selected video and a preprocessed version of the
ground truth tag set: (v, PREPROCESS(GT))

To improve the usability of our CAPTCHA, we add tags from
related videos to the ground truth tag set. RELATEDTAGS, RE-
JECTFREQUENTTAGS, and PREPROCESS are defined in Sections

3.3, 3.4 and 4.1. To maintain security we filter tags estimated to
occur frequently in the database. Details regarding ground truth
tag set generation described in the following subsections.

3.1 Related Videos

YouTube provides a list of up to 100 related videos for each
video. Unfortunately, the details of how the related videos are se-
lected are not public. Relatedness seems to involve some combina-
tion of the similarity of tags, the number of viewings a video has
received, video co-views and possibly other factors. The use of
related videos exploits social structure within the video database.
The hope is that accepting tags from related videos will be help-
ful for users and difficult for attackers to construct or learn models
for these social tagging patterns. For example, consider a video
tagged with {obama, president} which has a related video that is
tagged with {barack, obama, president}. In our approach we as-
sume that “barack” is likely a valid tag for the original video, even
though the person that that posted the video did not provide it.

For this first investigation, we chose to use the set of related
videos that YouTube provided, and left other techniques as future
work. An alternate strategy would be to query using combinations
of the tags on a video, the maximum number of which would be:

3 (1) ==

Note that each tag-based query only returns at most 1000 videos,
so this technique only provides a partial view of videos in the
database (i.e. our access to the video graph G is limited).

Tags from related videos can also be used as a form of social
spell checking. For example, we observed that a video of the magi-
cian Criss Angel had many related videos which had been tagged
as “Chris Angel” or “Kris Angel”. By adding related tags, we are
able to allow for common misspellings.

While there are often additional words to be obtained from a
video’s title [7], in our preliminary user study we found that adding
titles did not substantially increase the usability of the system (e.g.
we observed a decrease in security of 5% and only an increase in
usability of 0.3% relative to matching against only author-supplied
tags). In addition, we could not estimate the security impact of
adding title words using our tag frequencies (which are calculated
over tag space, not title space), and so we decided not to allow title
words.

3.2 Cosine Similarity of Tag Sets

To select tags from those videos that have the most similar tag set
to the challenge video, we performed a sort using the cosine sim-
ilarity of the tags on related videos and the tags on the challenge
video. The cosine similarity metric is a standard similarity met-
ric used in information retrieval to compare text documents [24].
The cosine similarity between two vectors A and B can simply be
expressed as follows:

A-B

SIM(A, B) =cosf = —————
(4.5) TATTB]



The dot product and product of magnitudes are:

A -B = zn:aibi
i=1

n n

Z(ai)Q Z(bz‘)Q

=1 i=1
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In our case, A and B are binary fag occurrences vectors (i.e.,
they only contain 1’s and 0’s) over the union of the tags in both
videos. Therefore, the dot product simply reduces to the size in-
tersection of the two tag sets (i.e., |A; N Ry|) and the product of
the magnitudes reduces to the square root of the number of tags in
the first tag set times the square root of the number of tags in the
second tag set (i.e., \/|A¢|\/| R¢|). Therefore, the cosine similarity
between a set of author tags and a set of related tags can easily be
computed as:

| At N Ry

VIALVIR

cosf =

Tag Set | Occ. Vector | dog puppy funny cat
A ‘ A ‘ 1 1 1 0

Ry B 1 1 0 1

Table 1: Example of a tag occurrence table.

Consider an example where A; = {dog, puppy, funny} and
R, = {dog, puppy, cat}. We can build a simple table which cor-
responds to the tag occurrence over the union of both tag sets (see
Table 1). Reading row-wise from this table, the tag occurrence
vectors for A; and Ry are A = {1,1,1,0} and B = {1,1,0,1},
respectively. Next, we compute the dot product:

A-B=(1+1)+(1x1)+(1*%0)+(0x1)=2
The product of the magnitudes can also easily be computed:
IANIB] = v3V3=3

Thus, the cosine similarity of the two videos is % =0.6.

3.3 Adding Related Tags

Once the related videos are sorted in decreasing cosine similar-
ity order, we introduce tags from the related videos into the ground
truth. The maximum number of characters allowed in a YouTube
tag set is 120. Therefore, the tag set could theoretically contain up
to 60 unique words (each word would have to be a single charac-
ter). The maximum number of related videos which YouTube pro-
vides is 100. Therefore, adding all of the related tags could poten-
tially add up to 6000 new tags. We chose to limit the upper bound
by adding up to n additional unique tags from the related videos
(sorted in decreasing cosine similarity order). Given a challenge
video v, a set of related videos R, and a number of related tags to
generated n, the following algorithm generates up to n related tags.

RELATEDTAGS(A, R, n)

1. Create an empty set, Z « ().

2. Sort related videos R in decreasing cosine similarity order of
their tag sets relative to the tag set A (for a challenge video
v).

3. For each related video r € R:

(a) If the number of new tags on the related video r is <
n — |Z|, add them all to Z.
(b) Otherwise, while the related video r has tags and while
|Z| < n:
i. Randomly remove a tag from the remaining tags
on the related video 7, and add this tag to Z.

4. Return Z.

This technique will introduce up to n additional tags to the ground
truth set. In the case where we have already generated n — b related
tags and the next related video contains more than b new, unique
tags, we cannot add all of them without exceeding our upper bound
of n tags. For example, consider the case in which we wish to gen-
erate 100 additional tags (n = 100) and we have already generated
99 tags. If the next related video has 4 new tags, we cannot include
all of these in the new tag set, and so we randomly pick one to avoid
bias.

3.4 Rejecting Frequent Tags

Security against frequency-based attacks (an attack where the
three most frequent tags are always submitted) is maintained through
the parameters F' and ¢ in the challenge generation function VIDEO-
CAPTCHA (see earlier in this section). F'is a tag frequency distri-
bution (see Figure 2) and ¢ is a frequency rejection threshold. Dur-
ing challenge generation, after author-supplied tags and tags from
related videos have been added to the ground-truth set, tags with
a frequency greater than or equal to ¢ in F' are removed from the
ground-truth tag set.

REJECTFREQUENTTAGS(S, F, t)

1. Initially, GT « S.
2. Foreachtag g € GT:

(a) If F(g) > t, remove g from GT.
3. Return GT.

4. GRADING FUNCTION

The generation of a video CAPTCHA (see Section 3) returns a
challenge video v and a set of ground truth tags GT'. Given the
challenge video v, the set of ground truth tags G'T', the set of user
response tags U, and binary variables s and [ controlling whether to
perform stemming (s) and/or to use inexact matching (1), we grade
responses as follows:

GRADE(v, GT, U, s,1)

1. Preprocess the user supplied tags:
P — PREPROCESS(U).

2. If s = TRUE, P «— P U STEM(P)

3. If | = TRUE

(a) If 3t € GT and Jp € P such that
NORMLEVENSHTEIN(%, p) > 0.8, return PASS.
(b) Otherwise, return FAIL.

4. Otherwise,

(a) If GT N P # 0, return PASS.
(b) Otherwise, return FAIL.

Details about PREPROCESS, STEM and NORMLEVENSHTEIN
are provided in the following subsections.



4.1 Preprocessing

A stop word list is a list of common words which are filtered
prior to processing because they are unlikely to add additional in-
formation or context. For instance, it has been shown that over
50% of all words in a typical English passage can be constructed
using a list of only 135 words [13]. We chose to utilize a list of
177 stop words provided in the popular Snowball string processing
language developed by Martin F. Porter. Users are prevented from
submitting stop words as tags.

Prior to grading, all tags are preprocessed using the function
PREPROCESS, described here. The tags are converted to lower case
and punctuation is stripped to remove the effects of inconsistent
capitalization or punctuation. Additionally, only the first three tags
are used in grading. For example, given the input string “Barack
Obama U.S.A. man”, the preprocessor will output the set: {barack,
obama, usa}.

4.2 Expanding Tags through Word Stemming

To increase the likelihood of passing challenges, the user-supplied
tags U may be expanded through word stemming using the STEM
function. A stemmer is an algorithm for reducing inflected or de-
rived words to their root [18]. The root of a word is the word minus
any inflectional endings, such as ‘s’, ‘ing’, etc. The Porter Stem-
mer? is frequently used in information retrieval systems; it uses a
deterministic set of rules to recover word roots [20].

For example, if we allow stemming and if “dogs” € U and “dog”
€ T, the challenge is passed (where as it otherwise might not be,
depending on the set of related tags). A significant benefit of this
type of expansion is that it is a repeatable, algorithmic technique
which, at most, doubles the cardinality of U. If a response tag is
already in the stemmed form, for example “dog”, the stemmer will
simply return the same tag. Therefore, stemming adds between 0O
and 3 tags to U.

Chew suggested the use of a thesaurus to accept synonyms in the
image-based naming CAPTCHA [5] where the task was to guess
the common subject of six images. For example, a video about
carbonated soft drinks might be tagged as “soda” by one user and
“pop” by another; using synonyms we might identify a match. To
obtain synonyms, we used the freely available thesaurus from the
Moby Project’. However, in our first user study we found that
that the addition of synonyms drastically compromised security and
only marginally improved usability, so we decided not to use this
technique.

4.3 Allowing Inexact Matching

Many users may make spelling or typing mistakes when com-
pleting a challenge. Therefore, we can also boost usability by per-
forming inexact matching between user tags and ground truth. We
utilized the well known string edit distance, or Levenshtein dis-
tance [17]. The Levenshtein distance is the minimum number of
operations (insertions, deletions, or substitutions) required to con-
vert one string into the other. After computing the Levenshtein dis-
tance, we normalize it into the interval [0.0, 1.0], using the length
of the longer string. Given the two strings, s1 and s2, we compute
the normalized Levenshtein distance as follows:

LEVENSHTEIN(s1, $2)

NORMLEVENSHTEIN(s1, 82) = 1.0 —
(1, 52) MAX (1], [32])

As per Chew’s recommendation in [5], we have chosen to define
a match as a minimum normalized similarity of 0.8. This means

2Online at http://tartarus.org/~martin/PorterStemmer/
3Online at http://www.gutenberg.org/etext/3202

that the larger of two strings of length 1 < I < 5 are allowed no
edits, strings of length 5 < [ < 10 are allowed one edit, strings of
length 10 < [ < 15 are allowed two edits, etc. More generous or
conservative approximate matches could be used with correspond-
ing usability/security tradeofts.

S. ATTACK SIMULATION

The best way to attack a video CAPTCHA using tag frequency
data alone is to submit the three tags which label the largest set
of videos (i.e. where the union of the video sets is the largest).
Increasing usability by extending the ground truth tag set (as ex-
plained in the previous sections) will typically result in decreasing
security because it allows an attacker a larger set of tags to match
against. Given the size of the ground truth tag set and the tag fre-
quency rejection threshold ¢, we can provide an upper bound by
pessimistically estimating the attack success rate. If we prune our
ground truth tag set GT" at threshold ¢ and assume that F' is an
accurate estimate, then the worst case probability of a successful
attack is:

P.(A) < MIN(1.0,t % |GT)

This is an extremely pessimistic upper bound, which assumes that
each tag has the highest frequency allowable and that all tags la-
bel different videos (the sets of videos labeled by each tag are dis-
joint). On the assumption of disjoint tagging, we can use the tag
frequencies in F' to estimate a success rate by simply summing the
frequencies of each of the three submitted tags. Table 5 contains
the estimated attack success rate of tag sets at different pruning
thresholds (for the control condition).

t Best Attack Tags #Pruned P.(A)
1.0 [music, video, live] 0 0.1377
0.01 [dj, remix, vs] 37 0.0291
0.009  [girl, school, el] 44 0.0256
0.008 [animation, michael, star] 49 0.0237
0.007 [concert, news, day] 67 0.0207
0.006 [fantasy, dragon, rb] 92 0.0179
0.005 [islam, humor, blues] 129 0.0148
0.004 [real, bass, 12] 184 0.0120
0.003  [uk, spoof, pro] 302 0.0090
0.002  [seven, jr, patrick] 570 0.0060
0.001  [ff, kings, ds] 1402 0.0030

Table 2: List of attack tags, the number of tags pruned, and the
estimated upper bound on P, (A) for a given pruning threshold.
The estimated upper bound on P,.(A) is calculated as the sum
of each attack tag’s estimated frequency and assumes no tag set
expansion techniques have been used.

As mentioned above, the attack success rate is reduced by prun-
ing frequently occurring tags from the ground truth tag set. Any
tags which have an estimated frequency > ¢ are not accepted.
However, an intelligent attacker would then select the three most
frequent tags such that their estimated probabilities are slightly less
than the pruning threshold (i.e. ¢ — €). This is the attack which
we replicated. We combined the frequency estimates from multiple
random walks to obtain a sample for this attack. The sample con-
tained 5146 challenge videos (and 295,274 related videos used in
the challenge generation) for a total of 299,796 unique videos.

We varied ¢ in the interval 0.001 < ¢ < 0.01 by steps of 0.001.
Note that ¢ = 1.0 was also computed as this represents the case of
no pruning. For each of 11 rejection threshold values, we calculated
the best set of attack tags and used these to attack the 5146 videos.
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Figure 3: The attack success rates on 5146 videos with no stemming and exact matching. The control is located at the leftmost corner
(0 related tags added, no pruning, and an attack success rate of 12.86%). If all four corners of a tile have equal or better security

than the control, the tile is shaded.

We performed the tag frequency-based attack against 5146 video
CAPTCHAs. We observed that, in general, a smaller pruning thresh-
old reduces the success of the attack and a larger number of related
tags increases the success of the attack. Figure 3 plots the attack
success rate as the tag rejection threshold ¢ and the number of re-
lated tags n is varied. There is a nearly linear trade-off between ¢
and n for the attack success rate (see the roughly linear cut across
the colored tiles in Figure 3). Note that the attack success rate of the
control (no pruning and no additional related tags) is approximately
13% (see the leftmost corner of Figure 3).

6. USER STUDIES

To analyze the usability of our video CAPTCHA, we conducted
two anonymous, online user studies. IP addresses of participants
were recorded to protect against multiple responses from a single
user but were discarded during analysis. Friends, family, and col-
leagues were invited to participate, and a college-wide invitation
was also emailed to students. Collected demographics are shown
in Table 5.

6.1 User Study 1: Video Tagging

To study tagging behavior and to choose appropriate parameters
for our grading function, we first conducted a user study in which
we had participants tag a set of 20 randomly ordered videos with
3 unique tags each. The videos were manually selected to ensure
appropriate content (this is a modification of the first step in the
VIDEOCAPTCHA function for generating challenges).

In order to familiarize the participants with the task, two practice
videos were shown to the users, one of which was particularly chal-
lenging due to the use of a foreign language in the video. The tags

from the practice videos were recorded, but were not used during
analysis. Participants were instructed to fag each video with three
unique, non-stop words and then rate how difficult it was to think
of the three tags. Participants were asked to rate the difficulty using
the following scale (both numbers and descriptions were shown): 5
(Great Effort), 4 (Moderate Effort), 3 (Some Effort), 2 (Little Ef-
fort), and 1 (No Effort).

After completing the tag and rate task for each of the 20 videos,
the participants were asked the following questions in an exit sur-
vey:

1. Which task do you enjoy completing more?

(a) Guessing an appropriate tag for a video
(b) Transcribing a string of distorted text
(c) No preference

2. Which task do you find faster to complete?

(a) Guessing an appropriate tag for a video
(b) Transcribing a string of distorted text
(c) Neither

See Table 5 for the results of the exit survey. The participants were
also given a chance to provide additional comments and a field to
enter their email address if they wished to be contacted again in the
future.

6.2 User Study 2: Video CAPTCHAs

This study was nearly identical to the first with the following
modifications:

e Users were instantly told whether they have passed or failed
each challenge.



e The challenge videos were selected using a random walk
with manual filtering.

e An open source flash video player was used to stream the
videos instead of the YouTube.com player to mask the ID of
the challenge video.

An effort was made to keep the user interface similar across
both the user studies. In the first user study, participants were in-
structed to submit three tags for each video (the challenges were
not graded). However, tn the second user study, the instructions
emphasized that the participants were completing a challenge, or
test, which would be graded.

Unlike the first user study, the 20 challenge videos were se-
lected using a random walk (see Section 3). However, the videos
were manually inspected for inappropriate content; we rejected two
videos which had questionable adult content and five videos which
contained strictly non-English tags. Other than that, all other videos,
regardless of length, content, or rating were allowed.

In this user study, we were also concerned with people trying to
defeat our video CAPTCHA. Therefore, we pre-fetched the video
files from YouTube and streamed them from our own servers using
a free open source flash video player. If we had chosen to use the
YouTube flash video player, the participants could either view the
page’s source to expose the YouTube video ID or click on the player
itself to be redirected to the video on YouTube.com (which would
reveal the author’s tags).

In order to inform the user whether they passed or failed the
challenges, we had to grade their responses. The selection of pa-
rameters for the grading function was based on an analysis of the
usability Pr(H) (determined in the first user study) and the secu-
rity P-(A) (estimated through our simulated attack). We used the
most usable generation parameters for VIDEOCAPTCHA that did
not rely on stemming or inexact matching but whose parameters
still provided better or equal security than the control. We com-
puted the effects of varying the generation and grading parameters
in a post-processing fashion. We chose to analyze the impact of
varying n and ¢ (for challenge generation), and s and ! (for chal-
lenge grading). Let us define our parameter space 7 as a 4-tuple
(n,t,s,10).

Our control (no related tags, no pruning, no stemming, and exact
matching) is 7. = (0, 0, FALSE, FALSE). From our first user study,
we observed Pr(H|r.) = 0.75. From our attack estimation, we
observed that P,.(A|7.) = 0.1286. To maximize human pass rates
while limiting machine pass rates, grading challenges using exact
matching, we wished to select a 7 such that:

P.(A|r.) > P-(A|7)
Pr(Hlre) < Pr(H|7)
P.(H|7) is maximized.

S e

s = FALSE and | = FALSE

We exhaustively searched the discrete parameter space and found
that 7 = (110, 0.005, FALSE, FALSE) satisfied these criteria. These
parameters yielded the maximum usability while still outperform-
ing the security of the control and using exact matching and no
stemming. We chose to use this parameter setting so as to avoid
discouraging participants, while using the strictest grading protocol
(exact matching of tags). The human success rates were computed
in a post-processing fashion for the conditions including stemming
or inexact matching and can be found in Table 6. Complete results
can be found in [15].

6.3 User Study Results

A set of three metrics for evaluating the usability of CAPTCHAs
are presented in [28]. To evaluate errors, we measured the accu-
racy of the users (how accurately can a user pass a CAPTCHA?).
The accuracy of our users was over 90%. To evaluate efficiency, we
measured the response time of the users. The median response time
of our users was 17 seconds (see Table 3). To evaluate satisfaction,
we measured the perceived difficulty of the users using a 1-5 scale.
The mode of the perceived difficulty for our CAPTCHA was 2 (see
Table 4). As expected, the difficulty ratings and the median comple-
tion times are strongly correlated (the Pearson’s coefficients were
p = 0.9492 and p = 0.9898 for the first and second user studies,
respectively). Detailed completion times and difficulty ratings are
omitted here for space, but can be found in Table 4.3 of reference
[15].

User Study 1~ User Study 2
Mean (1)  29.688 22.038
StdDev (o) 34.746 23.578
Median 20.642 17.062

Table 3: Completion time statistics in seconds.

User Study 1~ User Study 2
Mean ()  2.1343 2.3066
StdDev (o)  0.9482 1.0181
Mode 2 2

Table 4: Difficulty rating statistics.

For our analysis, we varied the parameters in following ranges:
t € {0.001,0.002,...,0.01,1.0} and n € {0,5,...,195,200}.
As the pruning threshold ¢ decreases, more tags are pruned from
the ground truth set and the human success rate decreases. As the
number of additional related tags n increases, more tags are added
to the ground truth set and the human success rate increases.

The human success rate for the control in the first user study
(P-(H) = 0.75) is located at the leftmost corner of Figure 4.
The addition of only 5 related tags improves the usability of the
CAPTCHA approximately 6% regardless of the pruning level. While
many of the parameter settings yield a higher human success rate
than the control, a parameter setting is generally only useful if it
does not have a higher attack success rate than the control.

The human success rates from the first user study with no stem-
ming and exact matching are plotted in Figure 4 while the corre-
sponding human success rates from the second user study are plot-
ted in Figure 5. A summary of the human success rates, attack
success rates, and gap values over the parameter space is presented
in Table 6.

As Table 6 indicates, the human success rate on the control is
only 69.73%. By careful selection of parameters, we are able to
boost the usability to over 90% and even increase security slightly
(by 0.23%).

Additionally, the parameters appear to be relatively stable across
our two independent samples. In general, the human success rates
are slightly lower in the second user study than in the first user
study. This can be explained by the sampling method used: the
videos used for the first user study were manually selected while
the videos used in the second user study were randomly selected.
The trends and patterns of the human success rates are uniform
across both samples as shown in Figure 4 and Figure 5.
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Figure 4: The human success rates from the first user study with no stemming and exact matching. The control is located at the
leftmost corner (0 related tags added, no pruning, and a human success rate of 75%). If all four corners of a tile have better usability
than the control, the tile is shaded.

Probability of Humans Succeeding (User Study 2)
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Figure 5: The human success rates from the second user study with no stemming and exact matching. The control is located at the
leftmost corner (0 related tags added, no pruning, and a human success rate of 69.73%). If all four corners of a tile have better
usability than the control, the tile is shaded.



User Study 1 User Study 2
Age group
18-24 74.82% (107)  77.71% (143)
25-34 13.28% (19)  11.95% (22)
35-44 3.496% (5) 4.891% (9)
45-54 4.195% (6) 2.173% (4)
55-65 2.797% (4) 2.717% (5)
65-74 0.699% (1) 0.543% (1)
75+ 0.699% (1) 0.0% (0)
Gender
Male 79.02% (113)  83.69% (154)
Female 20.97% (30)  16.30% (30)
Highest level of education completed
Some High School 0.0% (0) 0.543% (1)
High School 2.797% (4) 4.891% (9)
Some College 46.85% (67) 47.82% (88)
Associate’s 4.895% (7) 6.521% (12)
Bachelor’s 33.56% (48)  30.43% (56)
Master’s 11.18% (16) 4.347% (8)
Professional Degree 0.699% (1) 0.0% (0)
PhD 0.0% (0) 5.434% (10)
Number of online videos watched per month
0-4 17.48% (25)  17.93% (33)
5-14 30.76% (44)  30.43% (56)
15-30 23.07% (33)  20.65% (38)
31+ 28.67% (41)  30.97% (57)
Have you ever uploaded a video before?
Yes 60.83% (87)  64.67% (119)
No 39.16% (56)  35.32% (65)

Which do you find more enjoyable?
Transcribing Distorted Text  15.38% (22)
Tagging a Video 61.53% (88)
No Preference 23.07% (33)
Which do you think is faster?

Transcribing Distorted Text  64.33% (92)
Tagging a Video 19.58% (28)
Neither 16.08% (23)

20.10% (37)
58.15% (107)
21.73% (40)

59.78% (110)
27.17% (50)
13.04% (24)

Table 5: Participant demographics and exit survey responses.

In the first user study, we were able to outperform the control
by including as few as 5 additional related tags. However, in the
second user study, we must include 10 or more related tags for all
t < 1.0. In the first user study, we were able to reduce the attack
success rate to nearly 1.2% (adding 5 related tags, pruning at 0.003,
using stemming and exact matching). However, in the second user
study, the best security level which we were able to achieve while
maintaining the control pass rate for humans was 2.1% (adding 25
related tags, pruning at 0.002, using stemming and exact matching).

As shown, our video CAPTCHA can be parameterized to al-
low for different tradeoffs between usability and security. We also
observed that it is indeed possible to out-perform the control by
adding related tags and pruning frequently occurring tags during
challenge generation.

7. CONCLUSION AND FUTURE WORK

We have proposed the first CAPTCHA that uses video under-
standing to distinguish between humans and machines. It has nearly
all of the desirable properties outlined in the introduction: chal-
lenges can be semi-automatically generated, graded automatically,
the challenge design and data are publicly available, and challenge

Condition n t s 1 P.(H) P.(A) Gap

Control 0 1.0 0.6973  0.1286  0.5687
Most Usable | 100  0.006 0.8828  0.1220  0.7608
Most Secure | 30 0.002 0.7502  0.0239 0.7263
Largest Gap | 45 0.006 0.8682  0.0750 0.7931
Most Usable | 100 0.006 v 0.8896  0.1226  0.7670
Most Secure | 25 0002 v 0.7548  0.0209  0.7339
LargestGap | 45  0.006 v/ 0.8755  0.0750  0.8005

Most Usable | 100  0.006
Most Secure | 15 0.003
Largest Gap | 25 0.006
Most Usable | 90 0.006 v/
Most Secure | 15 0.003 v
Largest Gap | 25 0006 v

0.9000  0.1280 0.7719
0.7671  0.0233  0.7438
0.8611  0.0526  0.8084
0.9019  0.1263  0.7755
0.7690  0.0237  0.7453
0.8649  0.0526 0.8122

ENANANA NN

Table 6: Human and attack success rates. n is the number of tags
added, ¢ the tag frequency rejection threshold, s indicates if word stem-
ming is used, and [ indicates whether approximate matching of tags is
used. P,.(H) is the human success rate, P.(A) is the attack success
rate, and Gap is the difference between the human and attack success
rates.

generation and grading may be parameterized in order to achieve
a desired balance between usability and security. Using a video
database known to be free of inappropriate content, our Video
CAPTCHA has all four desirable properties (no human inspection
is needed, and generation becomes fully automatic).

The results of our attack estimate and second user study suggest
that our video CAPTCHAs have comparable usability and secu-
rity to existing CAPTCHAs (see Table 7). In fact, more than half
(60%) of the participants in our second user study indicated that
they found the video CAPTCHA more enjoyable than traditional
CAPTCHAS in which distorted text must be transcribed. These re-
sults are encouraging and suggest that video CAPTCHAs might be
a viable alternative.

CAPTCHA Name Type P.(H) P.(A)
Microsoft [3] Text-based 0.90 [3] 0.60 [27]
Baffletext [4] Text-based 0.89 [4] 0.25 [4]
Handwritten [22] Text-based 0.76 [22] 0.13 [22]
ASIRRA [6] Image-based 0.99 [6] 0.10 [9]
Video [15] Video 0.90 [15] 0.13[15]

Table 7: A comparison of human success rates (P,(H)) and
attack success rates (P.(A)) for our video CAPTCHA (for
our most usable condition) against several other well-known
CAPTCHAs.

In this first investigation, the security of the vidleo CAPTCHA
was only tested with a tag frequency-based attack. We acknowl-
edge that other attacks may perform better. For example, computer
vision could be used to locate frames with text-segments in them,
OCR the words, and then submit the words. If the videos were
pre-scanned for text content, the text could be OCR’ed in a pre-
processing phase. These words would then be marked as taboo
tags (similar to how taboo tags are used in the ESP game [26]).
Another attack could use Content-based Video Retrieval systems
to locate videos with similar content (and then submit their tags).
Audio analysis might give an indication as to the content of the
video. We are currently pursuing an audio-based attack on our
video CAPTCHAs.



It would be interesting to compare the usability of the video
CAPTCHA under all combinations of audio and video being present
or absent. Such a study would help us evaluate the usability of
our video CAPTCHA for individuals with limited vision or hear-
ing abilities. The current CAPTCHA was tested only for English-
speaking users located in the United States, trying to match English
tags. Another interesting experiment would be to see if using dic-
tionaries from other languages to seed random walks during gen-
eration would yield usable challenges for other geographic regions
and cultures.

Finally, the tag-based challenge generation technique presented
is not video-specific. We can imagine CAPTCHAs being devel-
oped which utilize social structure in other types of tagged data,
for example using images from Flickr.com.
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