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Abstract

Cells respond to environmental perturbations with changes in their
gene expression that are coordinated in magnitude and time. Timing in-
formation about individual genes, rather than clusters, provides a refined
way to view and analyze responses, but is hard to estimate accurately.

To analyze response timing of individual genes, we developed a para-
metric model that captures the typical temporal responses: an abrupt
early response followed by a second transition to a steady state. This im-

pulse model explicitly represents natural temporal properties such as the
onset and the offset time, and can be estimated robustly, as demonstrated
by its superior ability to impute missing values in gene expression data.

Using response time of individual genes, we identify relations between
gene function and their response timing, showing, for example, how cy-
tosolic ribosomal genes are only repressed after mitochondrial ribosome is
activated. We further demonstrate a strong relation between the binding
affinity of a transcription factor and the activation timing of its targets,
suggesting that graded binding affinities could be a widely used mecha-
nism for controlling expression timing.
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Introduction

Over the past few years, significant progress has been made in mapping different

components of the cellular architecture: protein complexes, functional modules,

and even more complex pathways and cellular networks. However, the static set

of components and their interactions tells only part of the story. In reality, cells

continuously reconfigure their activity to adapt to their fluctuating environment,

and activate different parts of their pathways in a dynamic way. Obtaining

insight into the cellular dynamics is a significant challenge, primarily because

data measuring aspects of the cell’s activity over different points in time is hard

to obtain, especially at a genome-wide scale.

Arguably, the main data so far that have provided a genome-wide view into

the cell’s dynamics are measurement of gene expression profiles taken over a

time course, following a perturbation to the cell’s environment. Although these

measurements probe only a single level of the cellular control hierarchy, the

availability of transcription data under multiple conditions could provide sig-

nificant insights into dynamics of cellular control. With these data, we might

hope to study how the transcriptional program changes to cope with an environ-

mental perturbation. We can try to understand the role that expression timing

plays in cellular responses, to map those genes and modules that are expressed

in a timely manner and to identify molecular mechanisms that control timing.

Unfortunately, gene expression time courses are hard to interpret: they are

notoriously noisy, often measured at irregular intervals, and these intervals differ

from one experiment to the other. Thus, with the exception of cell cycle data,

much of the analysis of gene expression profiles has ignored their temporal as-

pects, using these data primarily to identify genes that share common responses

across experiments, and to associate genes with various cellular processes based

on their response profiles.

Some papers do attempt to model the dynamics of expression time courses

(see [1] for a recent survey). Several approaches [2, 3, 4, 5] have focused on

capturing the dynamics of cell cycle time courses; these methods are tailored

to the sinusoidal transcriptional patterns in the cell cycle, and do not gener-

alize to other types of time series. In the more general setting, Bar-Joseph

and other researchers [6, 7, 8, 9, 10] showed how splines can be used to encode

continuous gene expression profiles, and successfully impute missing values and

align “similar” expression profiles that exhibit different temporal properties.

Some methods [11, 12, 13] have defined “shape-based” similarity metrics for

gene expression time courses, for the purpose of gene clustering, but without

attempting to extract or evaluate specific timing properties. Other approaches
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[14, 15, 16, 17, 18] use a probabilistic or regression-based time series model

to capture the temporal dynamics of gene expression data. These approaches

all use generic function representation, capable of capturing a broad family of

response profiles, and hence tend to over-fit the data more easily. As a conse-

quence, the parameters of the model are typically estimated using clusters of

genes, possibly obscuring finer-grained signal. Most importantly, however, these

methods do not easily provide an approach for extracting biologically meaning-

ful timing aspects of the responses in individual time courses, and compare these

timing aspects across different conditions.

In this paper we propose a parametric approach that identifies interpretable

timing properties of mRNA profiles, and use them to characterize the timing

of cellular responses. The idea is to fit any given time course with a function

that is parametrized with biologically meaningful and easily interpretable pa-

rameters. Specifically, we describe a phenomenological model for encoding a

gene’s continuous transcriptional profile over time. The model is designed to

capture the typical impulse-like response to an environmental perturbation such

as changing media or stress condition: transition to a temporary level followed

by a second transition to a new steady state. Thus, we define the model in terms

of meaningful aspects of the response: its onset and offset times, the slope of

the response, and the short term and long term response magnitudes.

We evaluate the model on a broad compendium of 481 measurements in

Saccharomyces cerevisiae, comprising 76 different gene expression time courses

following diverse environmental perturbations. We show that the impulse model

is rich enough to capture a wide variety of expression behaviors and at the same

time robust enough to be learned from sparse data. We demonstrate this robust-

ness by providing estimates of missing measurements that are significantly more

accurate than other approaches. We then show how we can use the biologically

meaningful parameters that we extract from the impulse form to shed light on

the cell’s transcriptional response to environmental changes. In a parallel work

[19] we use the model presented here to analyze pathway-dependent patterns of

activity in metabolism, demonstrating its utility in anotehr context.
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Figure 1: The impulse model. (A) The six parameters of the impulse model. (B)
Examples of impulse model fit (solid line) to gene expression (squares) in response to
1M sorbitol, as described in [20].

Results

An impulse model of responses to changes

When subjected to an abrupt change in the environmental condition, a cell

typically responds by increasing the activity level of certain sets of genes and

decreasing the activity level of others. For example, when exposed to a heat

shock, genes involved in growth related processes are repressed, then shortly

followed by repression of ribosomal proteins coding genes. In many cases, the

expression level changes temporarily, exhibiting a sharp increase or decrease, and

later changes again, reaching a new steady state which is often different from

the original “resting” state Fig. 1. This two-step behavior is widely observed in

multiple systems, from yeast [21, 13] to human [15]. The reason is that an abrupt

environmental change requires two types of adaptive responses. First, the cell

actively reconfigures some processes, typically involving both generic emergency

responses and specialized processes that the cell recruits. At a second phase,

the cell achieves a new homeostasis in its new environment.

We propose an impulse model designed to encode a two-transition behavior,

allowing us to compactly represent the relevant aspects of expression responses

to environmental changes. The impulse model encodes this behavior as a prod-

uct of two sigmoid functions, one that captures the onset response, and another

that models the offset (see Methods). Importantly, this model allows for a sus-

tained expression level different from the resting state. The model function has

six free parameters (shown in Fig. 1(A)). Three amplitude (height) parameters
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determine the initial amplitude (h0), the peak amplitude (h1), and the steady

state amplitude (h2). The onset time t1 is the time of first transition (where rise

or fall is maximal) and the offset t2 is the time of second transition. Finally, the

slope parameter β is the slope of both first and second transitions. Formally,

the model has the following parametric form:

fθ(x) =
1

h1
· s1(x) · s2(x) (1)

s1(x) = h0 + (h1 − h0)S(+β, t1)

s2(x) = h2 + (h1 − h2)S(−β, t2)

S(β, t) =
1

1 + e−β(x−t)

θ = [h0, h1, h2, t1, t2, β] .

What type of profiles can the impulse model capture? It is designed for mod-

eling temporal profiles that have at most two significant changes in expression

levels. Examples of such profiles are depicted in Fig. 1(B), where the impulse

model was fit to actual expression measurements of yeast genes. The impulse

model is not appropriate for encoding periodic behavior with multiple peaks,

such as the characteristic behavior of the cell cycle (like the well-studied data of

[22]). Thus, the impulse model is best-suited for capturing a one-time response

to some external signal such as an environmental disturbance.

The parameters of the model are learned by minimizing a squared error to

fit measured data. Given a set of expression measurements {e1, . . . , en} at time

points {t1, ..., tn}, we search for the set of impulse parameters θ that minimize

the squared prediction error minθ

∑

i(fθ(ti)−ei)
2. We find the (locally) optimal

parameters using a conjugate gradient ascent procedure, repeated 100 times with

different starting points (see Methods).

Gene expression measurements are notoriously noisy and hard to model,

especially on the level of individual genes. We systematically evaluated the

properties of the impulse model using a diverse set of 76 conditions. First, we

found the model to be remarkably robust to both timing noise and to expression

level noise (see Methods). Furthermore, we estimated the model’s coverage —

the fraction of genes that can be well-fit with the model — showing that up to

95% of the genes are well described by the impulse model , depending on the

condition (see Methods). Finally, we estimated the extent to which genes had a

particularly impulse-like response, showing that, on average, 35% of the genes

have an impulse-like response profile (see Methods).
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Figure 2: Imputing missing values. (A) Mean squared error for imputing missing
values with the leave-one-out procedure described in the text. Methods compared are:
impulse model, cubic Hermite (CH), 2nd and 3rd order polynomials, approximating
splines and smoothing splines. Error is the average over 6209 genes in 76 conditions.
Error bars denote the standard error of the mean (s.e.m.) across the 76 conditions. (B)
Scatter plot of the mean error for the impulse model and cubic-Hermite
(CH, the second best predictor). Each point corresponds to a different condition,
and its shape shows the number of time point measurements in that condition. The
impulse model provides superior fits, especially in conditions with a small number of
time points. Note that the figure is in log-log scale, demonstrating that the impulse
model is superior across the full range of errors, providing better fit both for easy-to-fit
and hard-to-fit profiles. (C)–(E) Comparison of leave-one-out fits to a gene
expression profile. Squares denote measurements, which are the same for all three
panels. For each method, 5 curves are shown, each corresponding to a fit performed
with a different single measurement that was left out during the fit. The color of
each curve corresponds to the color of the hidden value (square marker). Curves
for the rightmost and leftmost measurements are not shown, because polynomials
perform very poorly in this extrapolation task. (C) Impulse model. (D) 2nd order
polynomial. (E) 3rd order polynomial. A fit for cubic hermit is given as supplemental
figure.
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Imputing missing values

The impulse model is a continuous function that provides an estimate for a

gene’s expression measurement at each point in time. We show that the impulse

model can accurately predict the value of missing expression measurements.

Imputing missing values is an important problem in gene expression data, hence

the success of our impulse model at this task is both a validation of the model,

and one of its applications.

We applied the impulse model to a compendium of 76 gene expression time

courses in Saccharomyces cerevisiae, which measure the response of yeast to

different environment stress conditions and changing media [23, 20, 24, 25, 26,

27, 28, 29]. Time courses had between 5 and 10 measurements (see a full list of

data sets and time courses in Supplemental Table 1).

We evaluated the performance of the model on the imputation task in two

ways: using information only at the level of individual genes; and incorporating

information from other, similar genes.

Using individual genes

First, we considered the ability of an impulse model to estimate the value of

an unmeasured expression value for a gene, given the other expression measure-

ments for that gene alone. For a given gene, we held out one of the expression

measurements, fit an impulse model to the remaining measurements, and used

the resulting function to estimate the expression value at the held out time

point. We compared this value to the measured held-out value, and computed

the error. We repeated this experiment for all 6209 genes in our compendium

and all measurements, and computed the mean prediction error. For compari-

son, we applied the same procedure using other methods for function estimation,

including both interpolation methods such as interpolating splines and cubic-

Hermite polynomials, and fitting methods using polynomials of degrees two to

five, and smoothing splines. All of these methods used information at the level

of single genes only, using measurements taken at all available time point to

predict the value in a single hidden time point. The results of this comparison

are shown in Fig. 2(A). The prediction of the impulse model are significantly

superior to all the other methods.

Fig. 2(B) shows a scatter plot of average prediction error for each of the 76

conditions, as obtained with the impulse model and the cubic-Hermite (CH, the

second best predictor). It shows that the impulse model is particularly better

at fitting time courses with a small number of points, suggesting that it avoids

over-fitting more effectively.
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Interestingly, a comparison to a third order polynomial yields similar re-

sults. This similarity suggests that even though the impulse model has 6 free

parameters, it avoids over-fitting better than a model with 4 free parameters.

The reason is that polynomials are generic function approximators, capable of

fitting any function, hence could predict fits that are highly unlikely for gene ex-

pression timecourses. In comparison, the impulse model focuses on a restricted

set of behaviors, and hence uses the domain-specific knowledge to avoid large

mistakes.

This effect can be understood by comparing the actual functions learned by

the different fitting procedures. Fig. 2(C)-(E) compares the fits to a particular

gene expression profile for three methods: polynomials of degree 2 and 3, and

the impulse model. The descriptive power of the 2nd order polynomial is too

limited, leading to a “flat” curve that changes little in time. On the other

hand, the 3rd degree polynomial is too expressive, and over-fits for several time-

points. Conversely, the impulse model, despite having a larger number of free

parameters, successfully avoids over-fitting the measurements.

Figure 3

Using whole genome information

When imputing missing values, a valuable source of information is the similarity

in expression profiles between different genes. Two approaches are commonly

used for taking this information into account. First, missing values can be

inferred from neighboring genes, where the neighborhood is based on the ob-

served measurements. Second, genes can be clustered and the cluster profiles

are then used for imputing the missing values. We compare the performance of

the impulse model with two standard methods that take these two approaches.

For the first evaluation, we follow the approach of Troyanskaya et al. [30] and

use profiles of similar genes to complete missing measurements. Troyanskaya et

al., in their KNN-impute procedure, propose a k-nearest neighbor procedure,

estimating the value of a time t measurement for gene g as the average of the

time t expression values measured for the k genes most similar to g. KNN-

impute uses a Euclidean distance over the vector of expression measurements

to find the nearest neighbors. To evaluate the gain in using the impulse model

we applied the same procedure, but using the values predicted by the impulse

model fit, rather than the raw original measurements.

Specifically, we hid a randomly selected single time point in the expression

profile of each gene, and used the remaining measurements to estimate the

left-out values (see Methods); overall, this process resulted in a level of about
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Figure 3: Whole genome comparisons. Median squared prediction error obtained
with Impulse-KNN compared with two other methods. Both figures are in log-log
scale, demonstrating that impulse NN is superior across a large range of error val-
ues. (A) Comparison with KNN-impute, where missing values are filled using
nearest neighbors (according to a Euclidean distance between experimental measures).
Impulse-model errors are on average 20% lower than those of KNN-impute with a Eu-
clidean distance. (B) Comparison with spline clustering [6], where expression
profiles are simultaneously clustered and modeled as a time course. Impulse-KNN

errors are on average 35% lower than with spline clustering.

10–20% missing values, depending on the number of measurements in each time

course. For each gene, we estimated the curve fit to the remaining measurements

of that gene. We then estimated the value of a missing time t measurement for

gene g by selecting the k genes nearest to g, using Euclidean distance over the

predicted values, and averaging the predicted expression values at time t. Note

that the predicted values were used both for selecting the neighbors and as

a basis for estimating the time t value. For comparison, we also applied the

standard KNN-impute procedure to the same data.

Fig. 3(A) compares the median error obtained with the two distance mea-

sures across 76 conditions. Using the impulse model reduced the error in 64 out

of 76 conditions, yielding an average error reduction of 20% of the KNN-impute.

This difference was highly significant (paired t-test: p < 3×10−6). The analysis

was repeated for k = 10 and k = 20, with almost identical results (data not

shown).

Bar-Joseph et al. [6] used another approach for utilizing similarity of ex-

pression profiles across genes. They cluster genes and train a model based on

approximating splines for cluster profiles. We compared this method with the

Impulse-KNN method described above, over the same data set described above,
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We used code supplied to us by Bar-Joseph, and selected values of the parame-

ters that performed well in the experiments described by Bar-Joseph et al. We

used 10 clusters, since we found that this number of clusters captures well most

of the structure in the data. The results, shown in Fig. 3(B) show that the

Impulse-KNN model outperformed spline-based clustering by 35% on average.

Temporal patterns of response to changes

The impulse form directly provides meaningful parameters that characterize

the shape of the response profile, including the response onset, offset and profile

peak. We chose to focus on the onset response time, since it directly captures

the timing at which the cell initiates the production of a gene’s mRNA, and this

timing could be critical to the survival of the organism upon an environmental

change. We therefore extracted the onset of every response profile, and used

these timing data to explore the relationship between response onset and gene

function.

To illustrate the insights arising from this type of analysis, we can consider

the timing patterns arising when the cell is exposed to diamide [20]. Here, we

can see that genes involved in gene expression respond at a wide range of delays

(Fig. 4(A)). Looking at three main subsets of this group, we find that genes that

are involved in RNA processing typically respond earlier than the other genes;

transcription genes also respond early, and translation is last. Interestingly,

translation occurs in two peaks, one observed early (∼7 minutes) and a second

occurring much later (∼18) minutes.

To understand this phenomenon better, we look into the distribution of on-

set times and peak responses of all ribosomal genes under diamide exposure. A

finer breakdown of the set of ribosomoal genes reveals that the vast majority of

the early onset events correspond to induction of the mitochondrial ribosome,

whereas the later events represent the repression of the cytosolic ribosome (see

Fig. 5). We note that previous studies of these data [20, 8] have noted the dif-

ferential expression of the ribosomal genes: while most cytosolic translation is

repressed, the mitochondrial ribosome is induced in order to handle the oxida-

tive stress caused by diamide. However, our onset timing analysis provides an

additional dimension to this standard result, demonstrating that there is also a

difference in the timing of these two events. We hypothesize that the reason for

this delay is that upregulation and translation of mitochondrial genes is required

to deal with the stress. Hence, cytosolic ribosomal genes can only be repressed

after translation of mitochondrial genes is completed.

The data in Fig. 5 also reveals a fairly large group of cytosolic ribosomal

genes that are repressed considerably earlier than the bulk of the genes in this
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Figure 4: Distribution of onset time and peak responses. Upper panels: Dis-
tribution of onset time in sibling GO categories. Bottom panels: Distribution of onset
time and peak response level per gene. (A) Subclasses of the gene expression GO
category, under exposure to diamide [20]. (B) Subclasses of intracellular organelle

part; Exposure to acid [25]. To reduce clutter, Not all subclasses are shown.

category (see Supplemental Table B). An in-depth investigation of these two

groups of genes shows two interesting trends. First, in the early group, many

of the genes (10 out of 33) are not ribosomal components but are more likely

required for creation of ribosomes and for RNA processing or translational fi-

delity; by comparison, such genes are a small proportion of the late group (3

out of 115, p < 10−6). One hypothesis is that the cell first represses accessory

proteins, whereas the structural components are only shut off at the end, giving

enough time for translation of the mitochondrial ribosome, as well as any other

proteins necessary for the cell’s immediate response. As a second trend, for the

large ribosomal subunit, we see nine genes in the early group that code for the

same component as a gene in the later group (for example, RPL13A shuts down

early, whereas RPL13B shuts down later). The only case where both copies are

shut down early is RPL41A and RPL41B, which code for a non-essential com-

ponent of the ribosome. An interesting hypothesis is that, to conserve resources,
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the cell begins by shutting off one copy of each component, and only then shuts

down the other. The situation is a little less clear with the small subunit, where

three components have both copies shut down early; however, these are not in

the central part of the ribosome. It would be interesting to understand whether

and why these components are not required during the transition phase.

To generalize this type of analysis and identify other functions whose RNA

levels are carefully timed, we looked at the distribution of onsets across genes

grouped by their GO associations. In each condition, we then searched for GO

categories whose onsets are significantly different from a baseline distribution of

onsets. A relevant baseline should contain genes of similar (but not identical)

functions. We therefore defined a separate baseline for each category using all

genes from sibling categories in the GO hierarchy (other children of its parent

category). For each GO category and each condition, we calculated a Wilcoxon

score to quantify how significantly its gene onsets appear earlier or later than the

baseline onsets. This comparison provides a tool for identifying sub-functions

that are controlled in time. We found 151 sub-categories that exhibited highly

significant (Wilcoxon test, p < 10−5, Bonferroni corrected) onset differences at

least in one condition (see Supplemental Table IV for a full list).

Fig. 4(B) shows another example, for the main sub categories of intracellular

organelle part, under exposure to Acid [25]. Mitochondrial genes are again reg-

ulated significantly earlier, and so are cytoskeletal genes, while a larger fraction

of chromosomal respond late. Ribosomal genes again have two peaks, and these

correspond again to mitochondrial and cytosolic ribosome; indeed, as we discuss

below, this distinction is found across a variety of conditions. Here, vacuolar

genes also appear to have two distinct peaks, with 53 genes responding before

t = 12 minutes and 20 genes responding after. Relative to the late vacuolar

genes, we find that the early vacuolar genes are enriched for vacuolar membrane

(hypergeometric p < 10−15).

We can also utilize our timing analysis to construct a system-level “response

timeline”, by looking at how multiple functional categories are ordered in time.

Under each condition, we calculated the ordering score for every pair of GO

categories, and used these ordering scores to identify sets of categories that are

regulated in a timing-distinct manner (see Methods). As one example, we con-

sider the onset timing extracted from the responses to DNA-damaging gamma

irradiation [24]. Fig. 6 plots the median peak and median onset time for each of

the top four timed categories in the cellular-component hierarchy. First, genes

of the nucleolus (a sub-organelle of the cell nucleus) are repressed, followed by

repression of ribonucleoproteins, then cytoplasmic proteins. Finally, membrane

proteins are activated. A similar analysis on annotations in the molecular func-
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Figure 5: The timing of of ribosomal gene responses under exposure to
diamide [20]. The figure shows the timing and peak level for two subclasses of
ribosomal genes: mitochondrial (blue squares) and cytosolic (red crosses). These two
groups exhibit response profiles that are distinct both in their expression level and
their timing, demonstrating that the timing of the ribosome to this condition is finely
controlled.

tion and biological processes hierarchies in the same condition (Supplementary

Figures 10 and 11), is consistent with this view: The biological processes of

ribosome biogenesis and assembly (which takes place at the nucleolus) are re-

pressed first, followed by the activation of the localization and transport genes

(processes that take place at cytoplasm and membranes). Similarly, the molec-

ular function structural constituent of the ribosome are repressed first, while

multiple functions related to transport are activated later.

Another interesting perspective on this finding is the observation that the

stronger the repression of the genes in these timed categories, the earlier the

onset of the repression. This phenomenon holds not only for the medians of

the groups in Fig. 6, but in fact the onset time is correlated with the peak

response across all genes in these categories (Pearson correlation, p < 10−10);

this phenomenon holds only for genes in timed categories (the background cor-

relation across all genes in this condition is p-value = 0.04). As one hypothesis,

if a group of genes is highly detrimental to the cell (leading to a strong repres-

sion), it may be desirable to shut them off as soon as possible. In particular, if

mRNA degradation mechanisms are used to decrease mRNA abundance in this

condition [31], this finding may also suggest a sequential targeting of the RNA
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degradation machinery, ordered by the cell’s current priorities.
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Figure 6: A timeline of functional responses following gamma irradiation..
Each cross denotes the median peak and median onset time of all genes in the cor-
responding GO category [24]. Length of bars denote the standard error of the mean
(s.e.m.) of each group (see Methods).

Finally, we looked at functional differences in timing across multiple condi-

tions. We counted the number of conditions in which each pair of categories is

significantly timed (p-value < 0.001, Wilcoxon test, Bonferroni corrected). In

general, nuclear and mitochondrial components respond earlier than cytosolic

and ribosomal components. For instance, for the cellular component hierarchy,

the mitochondrion, shown above to be activated early under exposure to di-

amide (Fig. 5), and acid (Fig. 4, responds significantly earlier (with p < 10−3)

than the cytosolic ribosome in 16 out of the 76 conditions tested (yielding an

overall p < 10−40, Binomial distribution with p = 10−3,N = 76). These con-

ditions were mostly stress conditions (rather than media changes), including

exposure to diamide, dtt, KCL and heat shock. Many of these stress conditions

create oxidative stress which elicit differential mitochondrial response. These

results show that these mitochondrial genes typically respond early. Mitochon-

drial responses in the remaining conditions were more scattered in time and

never significantly late.

For the biological processes hierarchy, translation often responds significantly

later than other various metabolic and transcription processes. For instance, in

12 out 76 conditions translation response occurs significantly after transcription.

Also, biosynthesis processes tend to follow metabolic processes. For instance,

in 11 conditions, biosynthetic process responds significantly after biopolymer
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metabolic process. For the molecular function hierarchy, almost all significant

pairs were due to late response of structural constituent of ribosome and struc-

tural molecule activity. Supplemental Table IV lists all category pairs and con-

ditions that exhibited significant timing relationships.

Graded binding affinity: A mechanism for controlling tran-

scription timing

The above findings suggest that cells control the timing of transcription acti-

vation to shape their responses to environmental changes. What mechanisms

could achieve fine timing control?

One possible mechanism is that sequential activation of genes is achieved by

cooperative binding by several transcription factors (TFs), each activated in its

turn. This hypothesis requires that TF’s are themselves sequentially activated

by some mechanism. A different (albeit not exclusive) mechanism is that a

single transcription factor binds to multiple target genes, but with different

binding affinities. Indeed, the recent work of Tanay [32] shows that binding

affinities, as measured in ChIP-chip data [33], have functional consequences

even in weak affinities that were previously considered insignificant. This work

demonstrates that transcription binding is not an all-or-none phenomenon, and

graded binding is achieved through graded sequence affinity. The reason and

purpose for having a wide range of binding affinities is still unknown, but it was

recently shown that gene expression in the phosphate response (PHO) pathway

is tuned to different environmental phosphate levels using both binding-site

affinities and chromatin structure [34]. In the specific context of metabolism, we

demonstrate in concurrent work that some linear chains of metabolic reactions,

whose transcription timing is ordered, also have ordered binding affinities [19].

However, it is unclear if the relation between binding affinity and expression

timing holds across other cellular functions, or if it is specific to the ordering

constraints of linear metabolic chains; and what range fo binding affinities are

relevant for controlling transcription timing.

If graded binding affinities are used for regulating the timing of gene ex-

pression, we expect the shape of a gene expression profile to depend on the

strength of binding to its regulating TFs. Since binding operates as a stochastic

equilibrium, the stronger the binding affinity of an activating TF to a binding

site, the higher the probability of the TF to remain bound to the corresponding

promoter and recruit the transcriptional machinery, and hence the earlier the

gene would be expressed on average.

To test this single-TF hypothesis, we measured how binding affinities are

related to the onset time of transcription activation. Specifically, we combined
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Figure 7: Number of significant TF+condition pairs as a function of binding
strength considered. The peak is achieved at p-value = 0.52, with 38 significant
pairs out of 48. A p-value of 0.5 corresponds to by-chance binding.

whole genome binding affinity measurements [33] with gene expression mea-

surements as described above. We selected a subset of affinity and expression

measurements that were taken in matching conditions. We collected a total of

48 affinity-expression experiment pairs (see Supplemental Table B2), including

amino acid starvation (34 TFs), exposure to acid (2 TFs), and to heat shock

(12 TFs).

For each affinity-expression experiment pair, we restricted attention to genes

that were differentially expressed (absolute peak response > R), and measured

the Spearman correlation between their onset time and the binding affinity of

the measured TF, using the p-value as the quantitative measure of affinity.

Of course, not all genes are bound by a particular TF; we therefore wanted

to restrict attention only to those genes where TF binding plausibly occurs.

As discussed above, Tanay [32] showed that measured binding affinity p-values

are correlated with binding prediction based on sequence models, even for very

weak binding, suggesting that measured weak binding may reflect actual binding

rather than noise. We therefore considered the whole range of possible p-value

thresholds for treating a binding event as valid (where the chance level is p-value

= 0.5). Specifically, for a range of different affinity thresholds C, we computed

the Spearman correlation between onset time and binding affinity, restricting the

analysis to all genes that are both differentially expressed (crossing a threshold

R) and have a binding affinity stronger than a cutoff value C. Fig. 7 shows the

number of pairs that obtained significant Spearman correlation as a function of

the affinity cutoff value C; here, we used a gene expression response threshold

R = 0.7, chosen to maximize the number of significant pairs. The number of
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Figure 8: Mean onset time across genes grouped by their binding affin-
ity. (A) Binding of MET31 measured under amino acid starvation and expression
measured under adenine starvation, Spearman correlation r = 0.14 p < 2.5 × 10−10.
(B) MET32 measured under amino acid starvation and expression measured under
adenine starvation. Spearman correlation r = 0.13, p < 1.9× 10−9. Error bars denote
standard deviations, numbers above error bars denote group sizes.

significant pairs peaks near p-value = 0.50, where 38 of 48 TF-condition pairs

have a significant correlation (FDR q-value≤ 10−3) (the optimum is actually

obtained at 0.52, which is larger than the chance level 0.5, but this is likley

to be due to noise, . Typically, the correlations became even stronger when

limiting the analysis to more strongly expressed genes (larger values of R), but

the p-values decrease due to the smaller sample size.

Fig. 8 visualizes the relation between binding affinity and expression onset;

here, to more clearly illustrate the pattern, we used an expression cutoff of R =

1. We aggregated the genes in our set into four groups according to their binding

affinities, and calculated the mean onset time of each group. The left panel

shows the results of this analysis for the targets of MET32, a transcription factor

involved in methionine biosynthesis; here, the binding affinities were measured

under amino acid starvation, and the transcription onset extracted from a time

course following adenine starvation [20]. A clear trend can be observed in the

mean onset time as a function of MET32 binding affinity, across the whole

range of relevant affinity strengths. This effect is highly significant (Spearman

correlation r = 0.14 across 943 samples, p < 1.9×10−7, Bonferroni corrected for

48 hypotheses). Other such trends were observed under amino acid starvation,

including MET31 (Fig. 8b) (Spearman r = 0.14, Bonferroni p < 2.5 × 10−8),

CBF1 (p < 9.7 × 10−8) and SFP1 (p < 6 × 10−9).

We also found pairs that exhibited significant negative correlations (for in-
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stance YAP1 and HSF1 under a heat shock), where higher binding affinity was

associated with delayed onset time. The mechanism for such associations is

unclear at this point, and could be related to competition between TFs.

This finding has two implications. First, it shows that graded binding affini-

ties are very commonly correlated with expression timing, and could be a com-

monly used mechanism for controlling the timing of response onsets. Second, it

suggests that even (very) weak binding affinities have a functional effect on the

concerted profile of cellular expression responses.

Discussion

Environmental changes may threaten the survival of cells and force them to

respond quickly and reconfigure their gene expression profiles. To respond ef-

ficiently to changing conditions, cells have to control not only the magnitude

of their responses, but also their timing. Indeed, it was shown that expression

timing in E. Coli is tightly controlled, even to the level where sequences of in-

dividual proteins are expressed in an ordered manner [35, 36]. It is unknown,

however, if such controlled timing is to be found across multiple biological pro-

cesses, and if responses are similarly timed in Eukaryotes, which have more

complex hierarchy of pre- and post-transcriptional control mechanisms. Our

work suggests that fine-grained control of transcriptional timing exists also in

Eukaryotes.

The time course of gene expression responses often follows a typical impulse

curve: starting with an initial abrupt response that saturates and is then fol-

lowed by a relaxation to a new steady state. In this paper, we used this common

behavior to build a parametric model that can be robustly fit to a single ex-

pression profile, while capturing the essential timing aspects of the response: its

onset time, peak response and offset time.

Since the impulse model is tuned to typical cellular responses, it provides

robust estimates of response characteristics, even when given very few samples

per time course. We found that it provides superior prediction for imputing

missing or corrupted measurements, both using single gene and using whole

genome information. We believe that this model has other valuable uses, such

as the alignment and comparison of time courses taken at different time points,

or as the basis for determining a set of differentially expressed genes [9].

Perhaps most important, the impulse model allows us to study response tim-

ings directly. Using the distribution of onsets across functional categories, we

found multiple functions that are timed differently from closely related func-

tions. We also observed a global response pattern, roughly moving outwards
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from the nucleus towards the cytoplasm and membranes. Finally, we found

strong correlations between the onset of responses and the binding affinity to

specific transcription factors. This last finding suggests a hypothesis in which

gradual binding affinities are widely used by cells to tune the timing of expression

responses, extending on recent findings in the context of specific pathways [34].

Transcriptional regulation is one mechanism in a series of hierarchical con-

trols including regulation of mRNA, translation, and protein activation. Impor-

tantly, we note that our finding relates to overall mRNA levels, which encompass

effects from both transcriptional changes and mRNA degradation. Our analysis

is done purely on the timing in the change in mRNA levels, and we make no

attempt to identify the cause(s) for the change. Indeed, it seems quite likely

that many of the timing changes we observe result from a combination of these

two regulatory mechanisms. Regardless of the mechanism, our findings suggest

that the timing in fluctuations of gene expression levels is regulated in a way

that optimizes for the role of the resulting protein product. For instance, the

distribution of timing in Fig. 5 suggests a bifurcated response in the cytosolic ri-

bosome: those components that are not required for translation of other protein

products are repressed early, whereas the necessary components are repressed

later, after fulfilling their role. Therefore, even though several regulatory phases

separate mRNA levels from active protein levels, our findings support a model

in which response onsets of mRNA are tuned with respect to the corresponding

protein function.

The impulse model has its limitations. Since it is designed to capture typical

two-transition responses, it could provide a poor fit to expression profiles that

have more than two transitions, which we observe both in certain environmen-

tal response profiles (see Methods) and in the cyclic behavior of cell cycle. In

addition, the impulse model is currently fit to noisy expression measurements

without taking into account the physical mechanisms that lead to the observed

expression levels. It would be interesting to explore ways in which prior knowl-

edge regarding transcriptional or degradation dynamics can be integrated into

the impulse model.

The impulse model captures one kind of typical response profiles, but other

typical behavior may exist, such as the periodic behavior observed due to cell

cycle. Such typical behaviors can be identified by unsupervised clustering of

time courses, as in [13]. As in our analysis, one can then construct a special-

ized model that utilizes biologically relevant parameters that characterize that

type of response, allowing these parameters to be extracted and used in further

analysis.

Impulse-shaped responses are not limited to mRNA responses to stress. Sim-
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ilar patterns are observed in gene expression profiles along early development

[37] or in protein profiles. The modeling and visualizations techniques discussed

in this paper could be usefully applied in these cases as well. Analysis of gene

expression data can be used to analyze the dynamics of cellular networks, seeing

how they adapt in response to changes in the cell condition. Recent work uses

these data to obtain important insights into the dynamics of complex formation

during the cell cycle [38]. We hope that the fine-grained timing information

provided by our work will allow us to understand the reconfiguration of cellular

complexes and pathways in response to environmental perturbations.

Materials and Methods

Learning an impulse model

The impulse model is a product of two sigmoids

fθ(x) =
1

h1
· s1(x) · s2(x) (2)

s1(x) = h0 + (h1 − h0)S(+β, t1)

s2(x) = h2 + (h1 − h2)S(−β, t2)

S(β, t) =
1

1 + e−β(x−t)

θ = [h0, h1, h2, t1, t2, β] .

Clearly, other variants can be defined, such as using different slopes for the

two sigmoids. With the data discussed in this paper, we found that such a

model did not improve overall fit to data.

Fitting a single gene profile

We first consider the task of estimating the impulse model for the response

profile of an individual gene. We assume that a gene’s expression profile is

given as a set of measurement (xi, yi), where xi is a particular time point, and

yi the expression value observed at that point. To estimate the parameters

that best fit the gene’s observed expression measurements, we search for the

maximum likelihood parameter values, under an assumption of additive and

independent Gaussian noise. Equivalently, we define an error function that we

aim to minimize, which equals the negative of the log likelihood:

E = − log P (D | θ) =
1

2

∑

i

[fθ(xi) − yi]
2 + const. (3)
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This impulse function is differentiable with respect to all of the parameters

of the model, and its derivatives ∂f(xi)
∂θ

are given below. We therefore have the

gradient of the error function

∂E

∂θ
=

∑

i

[f(xi) − yi]
∂f(xi)

∂θ
(4)

which we use with a conjugate gradient procedure to search for the optimal

parameter set that minimizes the error function. Due to the form of the sigmoid

and impulse function, the error function may have multiple local minima; 100

random restarts were used to find a good local minimum. Typically, many of

the restarts converged to the same minimum which was also the best one found,

suggesting that the error function tends to have a strong basin of attraction,

which is likely the global optimum.

The gradient

We use the fact that the derivative of the sigmoid function S(β, x) = 1/(1 +

exp(−βx)), is ∂S(β,x)
∂x

= (−β)S(β, x)[1−S(β, x)]. Using the auxiliary functions

s1(x), s2(x) as defined above, we obtain the gradient of the impulse function

fθ(x) with respect to θ at x:

∂f

∂h0
= −

1

h1
[1 − S(+β, t1)] s2 (5)

∂f

∂h1
= −

1

h2
1

s1s2 +
1

h1
[S(+β, t1)s2 + s1S(−β, t2)]

∂f

∂h2
= −

1

h1

[

1 − S(−β, t2)
]

s1

∂f

∂t1
=

1

h1

[

− β(h1 − h0)S(+β, t1)(1 − S(+β, t1)
]

s2

∂f

∂t2
=

1

h1

[

− β(h1 − h2)S(−β, t2)(1 − S(−β, t2)
]

s1

∂f

∂β
= +

s2

h1
(h1 − h0)(t1 − x)S(+β, t1)[1 − S(+β, t1)]

+
s1

h1
(h1 − h2)(t2 − x)S(−β, t2)[1 − S(−β, t2)].

Extracting response onset

We defined the onset of the response as the time-to-half-peak — the time at

which the cell first reached half of its peak response, according to the fitted

impulse model). More precisely, we first compute the peak of the profile (the

maximum or the minimum, depending if the gene was activated or repressed);

then we find the first time where the profile reaches half of this peak level. This
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measure is widely used in analysis of sigmoidal functions and was found in our

case to be robust to noise, as discussed in detail below.

We also experimented with other measures, and found the time-to-half-peak

to be numerically more stable than other onset measures including: (1) half-

time-to-peak — half the time it takes the curve to reach its peak; (2) the param-

eter t1 of the impulse model; (3) fastest-change-time — the time with steepest

curve (zero second derivative). The superior stability of the time-to-half-peak

estimate is largely because it is numerically more stable to estimate the level of

the peak than its time.

Importantly, the time-to-half-peak definition of the onset time is independent

of the measurement scale, since rescaling a curve does not change the time it

reaches its peak. As a result, the onset provides orthogonal information to the

peak level.

Gene Expression Data

We collected 63 gene expression time courses from multiple published experi-

ments, including responses to changing media and various types of environmen-

tal stress [23, 20, 24, 25, 26, 27, 28, 29]. We also included 13 new experiments

with various media conditions. These experiments are detailed in another paper

that is currently under review [19]. For completeness, we describe the experi-

mental procedure below, and will remove this section in the final version of this

manuscript.

We generated a set of 13 time courses by measuring gene expression following

a metabolic change. Yeast strain KCN118 (MATalpha ade2) was grown at 28 C

in 400 mL of synthetic complete media with 2% dextrose (SCD) to an OD600

of 0.6. Synthetic complete was prepared using the standard recipe, except 75

uM inositol was included. At OD600 of 0.6, 100 mL of cells were collected

by centrifugation and frozen as a reference sample, and remaining cells were

rapidly collected by filtration, washed with distilled water, and resuspended in

300 mL of one of the following media: SCE (SC+ 2% ethanol), SCG (SC + 2%

galactose), SM1 (SCD lacking amino acids A, R, N, C, Q, G, K, P, S, F, and

T), SM2 (SCD lacking amino acids L, I, V, W, H, and M), 14 S0 (SCD lacking

all amino acids), S0G (no amino acids, 2% galactose), or S0E (no amino acids,

2% ethanol). To measure response profiles, 50 mL aliquots of resuspended yeast

were added to 500 mL flasks shaking in a 28 degree water bath for 15, 30, 60, 120,

or 240 minutes. At the indicated times, cells were collected by centrifugation

for 2 minutes at 3700 rpm, and were flash frozen in liquid nitrogen. Poly-

A RNA extraction, mRNA labeling, and cDNA microarray hybridization were

performed as previously described 30.
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For a detailed list of conditions see supplemental Table 1.

Model properties: Robustness, coverage, impulse-ness

The impulse-shape of expression responses is prevalent, suggesting that it could

be used as a meaningful characterization of response profiles. But could an

impulse function be accurately estimated from sparse and noisy samples?

To answer this question, we evaluate three aspects of the impulse model:

How robustly it can be estimated from scarce data; what fraction of cellular

responses it fits well; and how “impulse”-like are cellular responses to environ-

mental changes.

Robustness

Microarray measurements of mRNA levels are notoriously noisy, often causing

individual expression measurements to be unreliable. Importantly however, the

variability in the estimate of the response onset from a time course is consider-

ably lower than the variability of each individual measurement. This robustness

results from two complementing effects: robustness to expression level noise, and

robustness to timing noise.

Recall that we defined the onset-time as the time it takes to reach half-peak

level. This definition of the onset is invariant to linear transformations of the

data like rescaling and shift. Furthermore, since the onset is largely determined

by the lowest and highest measurements, additive noise often has small effect

on the estimate of onset time. To demonstrate this effect, we calculated the

correlation between two sets of onset times: one extracted from timecourses

measured in response to Peroxide exposure [20], and another extracted from a

corrupted version of the same timecourses, achieved by adding Gaussian noise

with zero mean and standard deviation of 0.1. The magnitude of the noise was

chosen to reflect experimental noise observed between replicates [39].

Fig. 13(A) shows that the two estimates of the onsets are strongly repeatable

(correlation coefficient is ρ = 0.89). Adding simulated noise to the measured

expression levels can also be used as a procedure for estimating reliability of

onset estimates from an individual expression profile: if adding noise results in

large variation of the onset estimate, the estimate can be viewed as unreliable.

Second, onset time estimates are robust to timing noise, a crucial property

for analyzing dynamical responses. Timing noise has multiple sources, both bi-

ological and experimental. For the current discussion, we consider timing noise

that originates from variability in experimental conditions, and study the sen-

sitivity of our onset estimates in face of such timing noise. In particular, we
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tested the effects of timing noise on onset estimates, using a simple noise model.

We consider the (unobserved) impulse curve that underlies the mRNA measure-

ments, and added noise to it, in the form of convolution with a Gaussian curve

that had a 2-minute standard deviation and a magnitude that was 20% of the

impulse peak. When a sigmoid function is convolved with a Gaussian (or any

symmetric function), the onset time of the original sigmoid and the convolved

ones are the same. This fact is a simple consequence of the properties of a convo-

lution of two symmetric functions. The result is that noise added to the timing

of the mRNA transcription has little effect on the estimate of the onset from

the mRNA time course. Fig. 13(B) illustrates this point, showing the convolu-

tion of an impulse curve (blue) with a 2-minute standard deviation Gaussian

(red), and demonstrating that their resulting convolution Fig. 13(C)preserves

the onset time.

Coverage

The impulse model is designed to capture a restricted set of expression response

types. What is the fraction of the genome that is adequately described by the

model?

To address this question we looked into the distribution of the normalized

errors across genes. The normalized error is the L2 prediction error, normalized

by the standard deviation of the expression measurements. This measure yields

a measure of error that is invariant to the scale of the expression levels.

We found that the impulse model was able to fit up to 95% of the genes in

some conditions with an error as low as half a standard deviation of the profile

variability (adenine starvation Fig. 14(A)). In a typical condition, the impulse

model achieved this low error on 75% of the genes (Fig. 14(B)). The distribution

of errors across all conditions is given in Fig. 14(C). Those conditions that had

larger errors typically had more samples (hence are harder to fit), or were from

irradiation experiments [29].

We complete the study of coverage by looking at the functional annotation

of genes that are well described by an impulse behavior. We defined a set of

K impulse genes to be the top K genes with lowest relative error, and tested

for functional enrichment of this group using GO. We chose K = 750 since the

number of significant categories peaked at this value.

In some conditions, impulse genes were enriched for GO categories relevant to

the condition. For instance, under nitrogen depletion, the impulse genes were en-

riched for amine metabolic process p < 5× 10−8 and nitrogen compound biosyn-

thetic process p < 2.5 × 10−5. In other cases, environmental changes elicited

generic responses, most notably the ribosome and its subunits (p < 10−6, ob-
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served in multiple stress conditions including DTT, diamide, and hypo-osmotic

stress). Another category that repeated significantly was non-membrane-bound

organelle (p < 10−15, DTT, p < 10−6 heat shock), and genes whose product

are located in the cytosol (p < 10−15 in DTT, heat shock, and gamma irradia-

tion). A similar GO enrichment analysis for non-impulse genes (genes with bad

impulse fits), did not reveal significantly enriched GO categories.

As could be expected, some genes do not follow a two-transition impulse

response, and fitting their profiles with an impulse model may miss important

components of the response. One family of such responses was observed in

responses to KCl. Fig. 15 shows three examples, where response starts with

an activation (repression in panel (C)), and later rebounds with a stronger

repression (activation in panel (C)). The impulse model can be generalized to

capture such three-transition profiles, in cases were the number of samples is

sufficiently large to allow fitting a model with additional parameters.

Impulse-ness

The above experiments estimate the fraction of the genome that can be described

by the model with a low error, but some of these genes may have profiles that

are easy to fit by any model. We therefore used a Monte Carlo approach to

estimate the fraction of the genes that are characteristically impulse-shaped,

that is, they can be described considerably better with an impulse profile.

Our intuition is that some temporal profiles are easy to fit with small error.

For example, genes that remain non-responsive to the induced stress, exhibit

near constant expression profile, which is very easy to fit, but also easy to fit

when measurements are shuffled in time. We therefore estimated the Impulse-

ness of a gene, by measuring the extent to which it is easier to fit the original

profile with an impulse model, as compared to time-shuffled timecourses with

the same measurements.

In particular, we first fit an impulse model to each gene profile and calculated

its error. We then randomly shuffled the expression measurements in time, fit an

impulse model to the shuffled data, and calculated the fit error. We repeated the

shuffling 100 times, yielding an estimate of the error distribution under the null

hypothesis. We finally used this distribution to calculate a p-value for each gene.

For the case of a non-responsive gene, both the original profile and its shuffled

versions are easy to fit, hence in this case, the p-value assigned to this profile

will be non-significant. On the other hand, in genes where the stress induces a

pronounced impulse response (like those observed in Fig. 1), the impulse model

can achieve low error, but many of the shuffled version will have multi-peak

profiles, which cannot be fitted well with a single impulse. These genes will
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therefore achieve a significant p-value.

The distribution of p-values across all 6209 genes under exposure to diamide

[20] is shown in Fig. 16(A). We use this distribution to estimate model coverage,

by calculating the excess in the fraction of genes observed for each p-value as

compared to the expected random level. Under the null hypothesis of random

errors, the expected distribution of p-values is flat (Fig. 16(A), black horizontal

line), simply following the definition of a p-value as the probability of observing

result under the null hypothesis. Many more genes in our model show smaller

p-values than expected (red zone above the black line). Fig. 16(B) plots the

cumulative distribution function (CDF) of the distribution in Fig. 16(A). The

area of that zone provides the fraction of genes that are well described by the

impulse model beyond what is expected at random, yielding that 54% of the

genes exhibit behavior well captured by the model in diamide. Comparing this

result to a similar analysis for other parametric families (estimated using the

same procedure), we find that the impulse model provides a significantly better

fit. In particular, 2nd order polynomials achieve no excess over the expected

random level, and 3rd and 4th order polynomials achieve only a 15% level (data

not shown). Under the same definition, Fig. 16(C) shows the distribution of

excess coverage across the 76 conditions in our data, showing that on average

35% of the genes are above the baseline.

Comparisons with other modeling methods

Single gene profiles were fit (Fig. 2) using the impulse model, and compared

with the following methods. (1) Polynomials fit of degree 2,3 and 4. The fitting

procedure finds a polynomial of degree d that fits the data best in a least-

squares sense. (2) Piecewise cubic Hermite interpolation, as calculated by the

matlab function interp1. (3) Piecewise cubic spline interpolation, as calculated

by the matlab function interp1. (4) Approximating splines calculated using code

supplied by Bar-Joseph.

K Nearest Neighbors procedure

For K-nearest neighbor imputation (KNN-impute), we followed the approach of

Troyanskaya et al. [30]. The known measurements are used to calculate distances

between gene profiles, and the k nearest neighbors of each gene are identified.

The missing measurement at a time t for gene g is estimated as the average of

the time t expression values measured for the k genes most similar to g. KNN-

impute uses a Euclidean distance over the vector of expression measurements

to find the nearest neighbors.
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To evaluate the impulse model in this context, we hid a randomly selected

single time point in the expression profile of each gene, and used the remaining

measurements to estimate the left-out values. Overall, this process resulted in a

level of about 10–20% missing values, depending on the number of measurements

in each time course. For each gene, we estimated the curve fit to the remaining

measurements of that gene. We then estimated the value of a missing time t

measurement for gene g by selecting the k genes nearest to g, using Euclidean

distance over the predicted values, and averaging the predicted expression values

at time t. Note that the predicted values were used both for selecting the

neighbors and as a basis for estimating the time t value.

For comparison, we also applied the standard KNN-impute procedure to the

same data. We used the on-line version of KNN-impute, available for download

at http://smi-web.stanford.edu/projects/helix/pubs/impute/. We used k = 15,

which is in the middle of the range of optimal values for k in the analysis of

Troyanskaya et al..

Identifying timed functions

To study the timeline of cellular responses, we identified GO categories that

are timed distinctly earlier or later than other categories, using the following

procedure. First, we defined a list of gene-sets pairs. The first set in each

pair consisted of all genes in a GO category. We only considered medium size

categories, and therefore ignored categories whose size was not between 1%–20%

of the genome (60–1200 assigned genes). The second set in a pair, consisted of

all genes in sibling categories (other children of the parent category). This set

of genes provide a baseline to which the GO category can be compared.

Second, We collected the set of onset times for each gene set, based on all

genes with relevant functional annotation. Finally, we used a Wilcoxon test to

the timing difference between every pair of categories.

To produce our functional time lines, we needed to identify a subset of k

categories that are strongly ordered. We chose to select the subset whose sum

of pairwise scores is maximal. However, finding such an optimal set is computa-

tionally very costly, since it requires to go over all subset of size k (in fact, this

is a case of the NP-Hard problem max weighted clique, that is believed to be

impossible to solve efficiently for large instances). Instead, we followed a greedy

procedure. We initialized the set with the two most distant categories (high-

est pairwise score), and repeatedly added a category whose sum of scores with

the current set was maximal. We collected N categories with this procedures,

and then manually pruned away categories that had high overlap (50%) with

other categories in term of the number of genes, removing the category with
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lower score. N was chosen to show many categories while avoiding clutter. This

procedure yields interpretable results, as demonstrated in Fig. 6.

Correction for multiple hypotheses

We used false discovery rate (FDR) as originally described by Benjamini and

Hochberg [40] to correct for multiple hypotheses. In some cases noted in the

text, we used the more conservative Bonferroni correction for simplicity. In

these cases, the reported upper bounds on the p-values were simply multiplied

by the number of hypotheses.
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Figure 9: (A) Scatter plot of the mean error for each condition using the impulse
model and polynomials. (A) 2nd . (B) 3rd order Polynomial.
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  8.   8.3 min   M phase

  7.   8.0 min   transcription from RNA polymerase II promoter

  6.   7.8 min   chromosome organization & biogenesis

  5.   7.5 min   establishment of localization

  4.   7.0 min   regulation of biological process

  3.   4.6 min   protein metabolic process

  2.   3.4 min   RNA processing

  1.   2.2 min   ribonucleoprotein complex assembly

Figure 10: A timeline of responses to gamma irradiation, biological processes.
Each cross denotes the median peak and onset time of all genes in the relevant GO
category [24]. Length of bars denote the standard error of the mean (s.e.m.) across
genes associated with the category. (see Methods).
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  5.   7.4 min   transmembrane transporter activity

  4.   6.5 min   DNA binding

  3.   4.7 min   catalytic activity

  2.   3.4 min   RNA binding

  1.   3.2 min   structural constituent of ribosome

Figure 11: A timeline of responses to gamma irradiation, molecular function.
Each cross denotes the median peak and onset time of all genes in the relevant GO
category [24]. Length of bars denote the standard error of the mean (s.e.m.) (see
Methods).

supplementary figure 12
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Figure 12: Comparison of leave-one-out fits to a gene expression profile.
Same analysis as in Fig. 2 but for cubic Hermite interpolation (CH). CH interpolation
is often heavily local: in this example, it is close to a piece-wise linear interpolation.
Fig. 2(A) shows that, on average, this type of fit yields poor approximations in com-
parison with the impulse model. Each curve corresponds to a fit performed with a
different single measurement that was left out during the fit. The color of each curve
corresponds to the color of the hidden value (square marker).
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Figure 13: (A) Robustness to expression level noise: Onset extracted from
corrupted time courses is highly correlated with the original onset (correlation coeffi-
cient is ρ = 0.89). Time courses were corrupted by additive Gaussian noise N(0, 0.1).
Each point corresponds to a gene; shown are differentially expressed genes (log ex-
pression > 1) under exposure to peroxide [20].(B) Robustness to timing noise:
Convolution of an impulse model (blue curve) that has an onset at 5 minutes (black
square), with a Gaussian (red curve, 2 minutes standard deviation). The resulting
convolution (purple curve), has essentially the same onset as the original impulse blue
curve.
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Figure 14: Distribution of normalized error across all genes. (A) The condi-
tion with largest number of genes with low error, adenine starvation [20]; more than
95% of the genes (5934) have a normalized error below half a standard deviation of
the expression. (B) A condition with typical error profile (synthetic complete media
with Ethanol and inositol). Condition was chosen as the median across conditions;
4705 genes (78%) had normalized variance below half a standard deviation. (C) Dis-
tribution of coverage (fraction of genes with error below cutoff) across conditions.
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Figure 15: Non-impulse responses to exposure to 1M KCl [41]. These genes
follow at least three transitions.
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Figure 16: Impulseness. (A) Distribution of p-values for impulse model fitting for
responses of yeast genes to diamide. The expected distribution of p-values (flat) is
plotted as a black line, and the excess of significant genes over random is colored in
red. (B) Cumulative distribution of the p-values (red) vs the expected in random
(blue). (C) Distribution of the excess of significant genes across 76 stress conditions.
It shows that the impulse model fits on average about 35% of the yeast genome above
the baseline level.
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B Supplemental Tables

Time course samples Time course samples

[20] [41]
sorbitol 1M 7 WT 0.125M KCl 5
diamide 1.5mM 9 WT 0.25M KCl 5
menadione 1mM 10 WT 0.5M KCl 10
25 oC 6 WT 1M KCl 9
DTT 2.5mM 9 WT 1M Sorbitol 10
adenine starvation 6 WT alpha 5
hypo osmotic shock 6 hog1 0.125M KCl 5
nitrogen depletion 10 hog1 0.5M KCl 10
H2O2 0.32mM 11 pbs2 0.5M KCl 5
DTT 8 sho1 0.5M KCl 5
heat shock 8 ssk1 0.0625M KCl 5

[24] ste11 0.0625M KCl 5
MMS DES459 mec1 0.02 8 ssk1 0.125M KCl 5
MMS DES460 0.02 7 ssk1 0.5M KCl 5
mec1 plus gamma 9 ssk1sho1 0.5M KCl 5
wt plus gamma 9 ssk1ste11 0.0625M KCl 5

[23] ste11 0.5M KCl 5
diauxic shift 6 ssk1ste11 0.125M KCl 5

New Data ste11 0.125M KCl 5
SD 6 ssk1ste11 0.25M KCl 5
SD+aa 6 ssk1ste11 0.5M KCl 5
SD+aaAR+ino 6 ssk1ste11 1M KCl 5
SD+aaLI+ino 6 [27]
SD+ino 6 WT Gal N2 rep1 5
SEtOH 6 WT Gal N2 rep2 5
SEtOH+aa 6 WT Gal N2 rep3 5
SEtOH+aa+ino 6 WT Glu N2 rep1 5
SEtOH+ino 6 WT Glu N2 rep2 5
Sgal 6 WT Glu N2 rep3 5
Sgal+aa 6 msn2/4 Galactose rep1 5
Sgal+aa+ino 6 msn2/4 Galactose rep2 5
Sgal+ino 6 msn2/4 Galactose rep3 5

[25] WT Gal N2 mean 5
Acid 7 WT Glu N2 mean 5
Alkali 7 msn2/4 Galactose mean 5
Heat 6 [29]
NaCl 6 18733 200GY 7
Peroxide 6 18734 200Gy 7
Sorbitol 6 18735 200Gy 7

[26] 6053 200Gy 7
Chitosan 6 hdf1 LM79 200Gy 7

Table I: List of time courses that were analyzed. conditions are grouped by publica-
tion.
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Adenine starvation ADR1 SM, ARG80 SM, ARG81 SM, ARO80 SM,
(Gasch 2000) BAS1 SM, CAD1 SM, CBF1 SM, CHA4 SM,

DAL81 SM, DAL82 SM, FHL1 SM, GAT1 SM,
GCN4 SM, GCR2 SM, GLN3 SM, HAP4 SM,
HAP5 SM, LEU3 SM, MET28 SM, MET31 SM,
MET32 SM, UGA3 SM, MET4 SM, MOT3 SM,
PHO2 SM, PUT3 SM, RAP1 SM, STP1 SM,
RCS1 SM, RPH1 SM, RTG1 SM, RTG3 SM,
SFP1 SM, SIP4 SM,

Heat shock ADR1 HEAT, GAT1 HEAT, HSF1 HEAT, MSN2 HEAT,
(Gasch 2000) SKN7 HEAT, YAP1 HEAT,

Heat ADR1 HEAT, GAT1 HEAT, HSF1 HEAT, MSN2 HEAT,
(Causton 2001) SKN7 HEAT, YAP1 HEAT

Acid MSN2 Acid, MSN4 Acid
(Causton 2001)

Table II: List of matching TF-condition pairs. The left column gives the gene expres-
sion condition. The right column gives the name of the name of the TF the conditions
at which it was tested.
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Early repressed ribosomal gene in Fig. 5 (onset before 13 min)

ARD1, CAM1, EGD1, FUN12, GCN1, GCN20, HEF3, MAP1,
NAT1, NIP7, NMD3, PAT1, RLI1, RPL10, RPL13B,
RPL31B, RPL35A, RPL37B, RPL39, RPL40A, RPL41A,
RPP1B, RPS19B, RPS20, RPS25A, RPS25B, RPS28A,
RPS28B, RPS30B, RPS31, SIS1, SQT1, YGR054W

Late repressed ribosomal gene in Figure Fig. 5 (onset after 13 min)

BTT1, GCN2, RPL11A, RPL11B, RPL12A, RPL12B,
RPL13A, RPL14A, RPL14B, RPL15A, RPL15B, RPL16A,
RPL16B, RPL17A, RPL17B, RPL18A, RPL18B, RPL19B,
RPL1A, RPL1B, RPL20A, RPL20B, RPL21A, RPL21B,
RPL22A, RPL23A, RPL23B, RPL24A, RPL24B, RPL25,
RPL26A, RPL26B, RPL27A, RPL27B, RPL28, RPL2B,
RPL3, RPL30, RPL31A, RPL32, RPL33A, RPL33B,
RPL34B, RPL35B, RPL36A, RPL37A, RPL38, RPL40B,
RPL42A, RPL42B, RPL43A, RPL4A, RPL4B, RPL5,
RPL6A, RPL6B, RPL7A, RPL7B, RPL8A, RPL8B,
RPL9A, RPL9B, RPP0, RPP1A, RPP2A, RPP2B,
RPS0A, RPS0B, RPS10A, RPS10B, RPS11A, RPS11B,
RPS12, RPS13, RPS14A, RPS14B, RPS15, RPS16A,
RPS16B, RPS17A, RPS17B, RPS18A, RPS18B, RPS19A,
RPS1A, RPS1B, RPS2, RPS21A, RPS21B, RPS22A,
RPS22B, RPS23A, RPS23B, RPS24A, RPS24B, RPS26A,
RPS26B, RPS27A, RPS27B, RPS29A, RPS29B, RPS3,
RPS4A, RPS4B, RPS5, RPS6A, RPS6B, RPS7A,
RPS7B, RPS8A, RPS8B, RPS9A, RPS9B, STM1, TIF5

Table III: Early repressed genes (onset before 13 minutes) and late ones in figure
Fig. 5.
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Condition GO category (median time) parent (median time )

Gasch sorbitol translation (10.00) gene expression (9.40)

Gasch diamide translation (10.75) gene expression (6.50)
rib. (16.30) intracellular non-mb. org. (6.60)
translation (10.75) macromolecule bios. p. (7.40)
intracellular mb. org. (6.10) intracellular org. (6.30)
mb. org. (6.10) org. (6.30)
biopolymer bios. p. (5.80) macromolecule bios. p. (7.40)
cytosolic rib. (19.10) rib. (16.30)
organellar rib. (6.15) rib. (16.30)
translation (10.75) cellular protein metabolic p. (7.50)
cellular bios. p. (8.90) bios. p. (7.45)
rib. (16.30) rib.nuc.prot complex (8.90)
ribosomal subunit (17.65) rib.nuc.prot complex (8.90)
structural constituent of rib. (18.10) structural molecule activity (8.25)
translation (10.75) cellular bios. p. (8.90)

Gasch dtt intracellular mb. org. (31.35) intracellular org. (32.85)
mb. org. (31.35) org. (32.85)
translation (54.55) cellular protein metabolic p. (36.65)
translation (54.55) macromolecule bios. p. (36.50)
rib. (59.90) intracellular non-mb. org. (44.30)
translation (54.55) gene expression (37.60)
rib.nuc.prot complex (51.10) macromolecular complex (33.50)
ribosomal subunit (61.30) rib.nuc.prot complex (51.10)
translation (54.55) cellular bios. p. (45.00)
biopolymer bios. p. (28.40) macromolecule bios. p. (36.50)
cytosolic part (61.60) cytosol (55.60)
rib. biog. and assembly (53.50) org. organization and biog. (32.70)
biopolymer metabolic p. (31.60) macromolecule metabolic p. (33.70)
rib. (59.90) rib.nuc.prot complex (51.10)
cytosolic rib. (62.00) rib. (59.90)
cellular bios. p. (45.00) bios. p. (36.65)

Gasch intracellular mb. org. (7.10) intracellular org. (7.40)
heat shock mb. org. (7.10) org. (7.40)

translation (10.00) cellular bios. p. (8.50)
cytosolic rib. (11.15) rib. (10.20)

Gasch MMS macromolecule metabolic p. (7.60) metabolic p. (10.00)

Gasch rib. biog. and assembly (2.00) org. organization and biog. (5.70)
wt+gamma rRNA metabolic p. (1.80) RNA metabolic p. (6.20)

Rando SD ribosomal subunit (11.25) rib.nuc.prot complex (10.00)

Rando intracellular mb. org. (9.60) intracellular org. (9.90)
SD+AR+I mb. org. (9.60) org. (9.90)

biopolymer metabolic p. (9.20) macromolecule metabolic p. (10.00)
rib. (12.60) intracellular non-mb. org. (10.70)
nucleolus (7.65) intracellular non-mb. org. (10.70)
ribosomal subunit (13.10) rib.nuc.prot complex (11.80)
rib. (12.60) rib.nuc.prot complex (11.80)
translation (12.15) macromolecule bios. p. (11.10)
translation (12.15) cellular protein metabolic p. (11.20)

Rando SD+I nucleolus (7.10) intracellular non-mb. org. (10.05)
translation (11.60) gene expression (9.60)
rib. (11.70) intracellular non-mb. org. (10.05)
intracellular mb. org. (9.00) intracellular org. (9.20)
mb. org. (9.00) org. (9.20)
ribosomal subunit (12.40) rib.nuc.prot complex (10.70)
translation (11.60) cellular protein metabolic p. (9.95)

Causton Heat nuclear lumen (15.00) org. lumen (14.40)
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Condition GO category (median time) parent (median time )

Gasch sorbitol translation (10.00) gene expression (9.40)

Causton intracellular mb. org. (9.60) intracellular org. (9.80)
Peroxide mb. org. (9.60) org. (9.80)

ribosomal subunit (18.95) rib.nuc.prot complex (14.10)
structural constituent of rib. (19.10) structural molecule activity (14.80)
rib. (17.45) rib.nuc.prot complex (14.10)
cytosolic part (19.10) cytosol (15.70)
nucleolus (12.05) nuclear lumen (10.20)
cytosolic rib. (19.90) rib. (17.45)
translation (15.60) cellular bios. p. (12.90)
nucleoplasm (9.35) nuclear lumen (10.20)

ORourke nucleolus (1.60) intracellular non-mb. org. (2.10)
0.0625MKCl nucleolus (1.60) nuclear part (1.70)

ORourke rib. (4.75) intracellular non-mb. org. (2.90)
0.125MKCL translation (4.50) gene expression (3.10)

biopolymer metabolic p. (2.60) macromolecule metabolic p. (2.90)
intracellular mb. org. (2.80) intracellular org. (2.90)
mb. org. (2.80) org. (2.90)
nucleolus (2.45) intracellular non-mb. org. (2.90)
RNA p.ing (2.50) gene expression (3.10)
nuclear part (2.10) intracellular org. part (2.80)
protein metabolic p. (3.40) macromolecule metabolic p. (2.90)

ORourke organellar rib. (4.30) rib. (9.90)
0.5MKCl cytosolic rib. (10.45) rib. (9.90)

translation (9.65) macromolecule bios. p. (5.90)
intracellular mb. org. (6.10) intracellular org. (6.45)
mb. org. (6.10) org. (6.45)
structural constituent of rib. (10.20) structural molecule activity (9.00)

ORourke cytosolic rib. (12.10) rib. (11.40)
1Msorb organellar rib. (6.75) rib. (11.40)

intracellular mb. org. (8.70) intracellular org. (8.90)
mb. org. (8.70) org. (8.90)
translation (10.75) macromolecule bios. p. (8.80)
cellular bios. p. (10.00) bios. p. (9.10)
rib. (11.40) intracellular non-mb. org. (9.70)

ORourke intracellular mb. org. (6.80) intracellular org. (7.10)
hog1 0.5MKCl mb. org. (6.80) org. (7.10)

translation (11.10) macromolecule bios. p. (7.30)
rib. (13.50) intracellular non-mb. org. (8.50)
organellar rib. (3.00) rib. (13.50)
cytosolic rib. (14.60) rib. (13.50)
cellular bios. p. (9.70) bios. p. (7.80)
translation (11.10) cellular protein metabolic p. (8.40)
rib. (13.50) rib.nuc.prot complex (10.30)

ORourke intracellular mb. org. (7.20) intracellular org. (7.40)
pbs2 0.5MKCl mb. org. (7.20) org. (7.40)

rib. (10.20) intracellular non-mb. org. (8.40)
translation (9.85) gene expression (7.80)
translation (9.85) macromolecule bios. p. (7.85)
translation (9.85) cellular protein metabolic p. (7.80)
rib. (10.20) rib.nuc.prot complex (9.30)
ribosomal subunit (10.30) rib.nuc.prot complex (9.30)
cellular bios. p. (9.10) bios. p. (7.90)
translation (9.85) cellular bios. p. (9.10)
biopolymer bios. p. (6.20) macromolecule bios. p. (7.85)
biopolymer metabolic p. (7.10) macromolecule metabolic p. (7.40)
protein modification p. (6.80) cellular protein metabolic p. (7.80)
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ORourke translation (9.70) cellular protein metabolic p. (8.00)
sho1 translation (9.70) macromolecule bios. p. (7.40)
0.5MKCl rib. (9.90) intracellular non-mb. org. (8.35)

intracellular mb. org. (7.10) intracellular org. (7.40)
mb. org. (7.10) org. (7.40)
organellar rib. (5.75) rib. (9.90)
cellular bios. p. (9.20) bios. p. (7.70)
cytosolic rib. (10.10) rib. (9.90)
rib. (9.90) rib.nuc.prot complex (9.10)

ORourke translation (9.80) macromolecule bios. p. (7.90)
ssk1sho1 translation (9.80) gene expression (8.10)
0.5MKCl cytosolic rib. (10.45) rib. (10.00)

rib. (10.00) intracellular non-mb. org. (8.15)
intracellular mb. org. (7.10) intracellular org. (7.40)
mb. org. (7.10) org. (7.40)
cellular bios. p. (9.00) bios. p. (8.10)
translation (9.80) cellular protein metabolic p. (8.20)
biopolymer bios. p. (6.55) macromolecule bios. p. (7.90)

ORourke rib. (9.15) intracellular non-mb. org. (6.85)
ssk1ste11 translation (9.00) gene expression (6.60)
0.5MKCl intracellular mb. org. (6.10) intracellular org. (6.40)

mb. org. (6.10) org. (6.40)
nucleolus (4.55) intracellular non-mb. org. (6.85)
translation (9.00) macromolecule bios. p. (7.20)
translation (9.00) cellular protein metabolic p. (7.60)
RNA p.ing (5.40) gene expression (6.60)

ORourke rib. (39.20) intracellular non-mb. org. (31.10)
ssk1ste11 biopolymer bios. p. (27.70) macromolecule bios. p. (30.40)
1MKCL cellular bios. p. (35.00) bios. p. (31.60)

translation (35.85) macromolecule bios. p. (30.40)

ORourke cytosolic rib. (10.40) rib. (10.05)
ste11 organellar rib. (5.85) rib. (10.05)
0.5MKCl intracellular mb. org. (7.80) intracellular org. (8.00)

mb. org. (7.80) org. (8.00)

Lai Gal R2 organellar rib. (4.50) rib. (9.90)
cytosolic rib. (10.50) rib. (9.90)

Lai Gal R3 organellar rib. (4.65) rib. (9.50)

Lai Mean organellar rib. (5.15) rib. (9.15)
cytosolic rib. (9.75) rib. (9.15)

Table IV: Differentially-timed sibling GO categories. List of GO categories
whose timing is significantly different than sibling categories (Wilcoxon test, p < 10−5,
Bonferroni corrected) . Only categories with 30–300 genes were considered. Notations:
‘p.’ for ‘process; ‘bios’ for ‘biosynthetic’, ‘biog’ for ‘biogenesis, ‘org.’ for ‘organelle’,
‘i.c.’ for ‘intracellular’, ‘rib’ for ’ribosome’, ‘m.b.’ for ‘membrane-bound’.
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