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Abstract

Search engines strive to maintain a “current” repository of all web pages on the internet to index
for user queries. However, refreshing all web pages all the time is costly and inefficient: many small
websites don’t support that much load, and while some pages update content very rapidly, others
don’t change at all. As a result, estimated frequency of change is often used to decide how frequently
a web page needs to be refreshed in an offline corpus.

Here we consider a Poisson process model for the number of state changes of a page, where a
crawler samples the page at some known (but variable) time interval and observes whether or not
the page has changed in during that interval. We examine this model in a practical setting where the
set of web pages for which rates need to be estimated is constantly evolving, where new pages enter
the set and estimation must begin immediately. We first estimate the rate of change for the observed
intervals using a Maximum Likelihood estimator described in Cho and Garcia-Molina (2000) and
adapted in Grimes and Ford (2008), and then choose subsequent intervals to refresh the page based
on the current estimate.

In this setting, choosing the subsequent crawl intervals trades off between increasing the number
of crawls invested in a single page and the increasing the probability that the page will be stale in the
repository. In addition, the rate at which the estimator converges to the true rate of change depends on
the distribution of crawl intervals. Here we parametrize the relative cost of a page being stale versus
the cost of an individual crawl, and define an optimal linear shrinkage of subsequent crawl intervals
with respect to the expected total cost. We also demonstrate that varying the optimal factor can be
used to bound the probability of a very stale page appearing in the repository.
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1 Introduction

Search engines crawl the web to download a corpus of web pages to index for user queries.
Since websites update all the time, the process of indexing new or updated pages requires
continual refreshing of the crawled content. In order to provide useful results for time-
sensitive or new-content queries, a search engine would ideally maintain a perfectly up-to-
date and comprehensive copy of the web at all times. This goal requires that a search engine
acquire new links as they appear and refresh any new content that appears on existing pages.
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As the web grows to many billions of documents and search engine indexes scale similarly,
the cost of re-crawling every document all the time becomes increasingly high. One of the
most efficient ways to maintain an up-to-date corpus of web pages for a search engine to
index is to crawl pages preferentially based on their rate of content update [5].

If a crawler had perfect foresight, it could download each page immediately after the
page updates, and similarly acquire new pages as they appear. However, no complete listing
or update schedule exists today, although some limited collection of new-content sites, such
as news pages, provide a feed of such structured data to search engines. For most of the
web, a crawler must attempt to estimate the correct time scale on which to sample a web
page for new content. The most common model for estimating expected rates of change
has been based on the assumption that changes arrive as a Poisson process. However,
this model also implies that a crawler cannot deterministically predict the correct time to
resample a page. Instead, based on the estimated average time between changes, a crawler
can choose an interval between refreshes that achieves some benchmark for freshness using
the probability that the page will change during the time between refresh crawls.

In this paper, we investigate a specific setting for estimating web page change rates:
where new pages are added to the web corpus regularly, and estimation must begin imme-
diately to schedule the page for refresh crawling. The estimator used for average rate of
change must be able to handle cases with virtually no observations in a way that converges
to the correct estimate. In the initial steps of estimation, however, the risk of a very stale
page increases due to the possibility that the estimator is incorrect. First, we develop a
total cost for any subsequent crawl interval when the true average time between changes
is known, using two parameters to describe the cost of an additional crawl and the cost of
the risk of the page being stale for one time unit. We demonstrate that for a known rate of
change, an optimal linear scaling can be chosen to minimize the total cost for a fixed set of
parameters. Second, we show that in the unknown case, the optimal linear scaling can be
adapted to bound the probability that a page is stale over a long period of time.

2 Related Work

2.1 The Evolution of a Web Page
Several studies have been done on evolution of web pages over reasonably long time peri-
ods, in particular Cho and Garcia-Molina [2] and Fetterly et al [8], [7]. Cho and Garcia-
Molina downloaded over 700,000 pages from a set of popular webservers on a daily basis
over 4 months, and then compared the MD5 checksum of the page to previous versions
of the page. Around 23% of pages over all domains in their study changed with an av-
erage frequency of one day (the minimum granularity measured), and an additional 15%
changed within a week. Fetterly, et al.[8] examined a much larger number of web pages
(151M) sampled from a breadth-first crawl and re-fetched approximately once a week over
10 weeks. To compare page content, they used a more sophisticated similarity metric based
on a set of “shingles” of the syntactic content of the page. For each page, information
about the start and duration of the download, the HTTP status code, and other details were
recorded.

Another important web phenomenon appeared in the Fetterly et al [8] study: a set of
web pages served from the same webserver that seemed to have different content, based
on automatic content change detection, but in fact formed of a set of disjoint adult phrases
that updated frequently. This type of “apparent” change is an extreme case of a persistent
problem in assessing meaningful rates of change in page content. In this case, the content
of the page actually changed (such content as there was), but in other cases the same auto-
matically generated text problem may appear in surrounding content such as ads, links to
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commercial pages, or tables of contents. In all of these cases, the page appears to change,
but the new content may not need to be crawled from a user perspective. These two studies
focused primarily on detected changes in the content of the page – either the raw file content
or the text properties of the document, and in the status of the page. Other studies have used
the “last-modified” date as recorded from the web server [6], [10] or changes in specific
pieces of information on the page such as telephone numbers, HREF links, IMG tags or etc
[1]. More recently, the question of information change has been treated as separate from
content change [11], [12] by examining changes in link content (instead of page content)
or persistent information change. In this work, we assume that a binary change detection
mechanism has been chosen, and focus primarily on the statistical issues of estimation,
rather than the method of identifying changes.

2.2 Models for Rate of Change
Given that an understanding of when a page changes is important to maintaining a fresh
corpus efficiently, but that many pages do not change frequently, several other works have
sought to accurately estimate the average time between page updates based on periodic or
variable-time samples. In almost all cases, a page is not crawled at the granularity at which
changes could potentially occur, and therefore a fixed sample rate may be asymptotically
biased for a given actual rate of change. Cho and Garcia-Molina [4] describe this problem
of bias, and compute an asymptotically less biased estimator of rate of change for regularly
sampled data. The same work also defines a Maximum Likelihood Estimator for the case
where data is sampled irregularly, a question of practical importance for search engine
crawlers because, as Fetterly et al [8] observed in their work, the delay between crawl
request and page acquisition can vary widely for different web servers and for different
retry policies by the crawler. This estimation model depends heavily on the assumption that
the number of page changes which arrive in any time interval for a given page is a Poisson
process, with a stationary mean that can be estimated from data. Matloff [10] derives
an estimator similar to the MLE of Cho and Garcia-Molina but with lower asymptotic
variance, and extends the work in a different direction: toward cases where the underlying
distribution of changes is not Poisson.

The Poisson model forms an important underlying element of these estimates. Fetterly
et al [8], O’Brien and Grimes [11], and several others test this assumption for their chosen
change measurements. While some exceptions are observed, for example, pages with per-
fectly regular automated updates or pages with more likely updates during local day time
(see [11]), most previous work shows only small populations (< 5%) of pages that are not
consistent with the Poisson model.

Both Cho and Garcia-Molina and Matloff focus primarily on smooth distributional
models in the case where some training period of data has been observed. By contrast,
our methods consider the case where a new page is added to the awareness of the crawler
without any previous record, and the page must be scheduled for refresh in a sensible way.
Because new pages created on the web frequently contain links to other new content, or
indicate a hot new topic, crawling these pages correctly from the start is important for user
facing content as well as acquisition of new content.

3 The Cost of Refresh Failures

Even if the average time between changes is known, there still exists a decision problem of
when to refresh the page. Allowing the page to go longer between refresh cycles increases
the risk that the saved version will not match the live version (the page becomes “stale”),
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while crawling the page more often increases the required bandwidth and processing to
maintain the web corpus.

3.1 A Total Cost function
For the i-th web page in the crawl, the number of changes in the jth crawl interval, of
length tij , is xij ∼ Poisson(λitij). The average time between changes, or change-period,
is ∆i = 1/λi. We now consider recrawling the page on a fixed interval, ti.

Under the Poisson model, the probability that the page is unchanged after time t is
e−t/∆i . Integrating this over a time period ti and dividing by the total time ti gives the
expected fraction of the time interval [0, ti] that the saved page matches the live version:

E(match|∆i, ti) = (
∆i

ti
)× (1− e−ti/∆i)

This formulation has the key element that the expected fraction of time when the pages
match can be considered as a function, ri = ti

∆i
, of the fraction of the average time between

changes, ∆i, and the crawl interval ti. We introduce two externally fixed costs: Cc = the
cost of a single crawl, and Cs = the cost of allowing the page to be stale over one hour. The
resulting total average cost per hour over the time interval [0, ti] is thus

C(total) = P (stale)×Cs+P (re− crawl)×Cc = (1− 1
ri
× (1−e−ri))×Cs+

1
ri
× Cc

∆i

Figure 1 shows a simulation of the total cost given the parameters Cc = Cs = 1, and
a true ∆ = 24 hours. The green line represents the analytic cost computed by the formula
above, and the red dotted line is the mean total cost over the simulated data. The two lines
align perfectly, both with a minimum total cost at a crawl interval equal to 0.3×∆.

3.2 Choosing an ‘optimal’ interval
Given a particular values for Cc, Cs and ∆i, we wish to choose ti so as to minimize the
average cost per hour.

Differentiating (1− 1
ri
× (1− e−ri))× Cs + 1

ri
× Cc

∆i
with respect to ri and setting it

equal to zero gives:

0 = Cs
1
r2
i

− Cs
(

1
r2
i

e−ri +
1
ri
e−ri

)
− 1
r2
i

Cc
∆i

Canceling a factor of 1
ri

and rearranging gives:

eri = (1 + ri)
Cs

Cs − Cc/∆i
= (1 + ri)

1
1− Cc/(Cs∆i)

Notice that this implies there is no finite positive solution for ri when Cc ≥ Cs∆i, because
er = 1 + r + r2

2! + r3

3! + . . . .
For example, in the case Cs = Cc = 1 and ∆i ≤ 1 the page goes stale so quickly that

the value gained in freshness from re-crawling the page is never enough to offset the cost of
that re-crawl. This is reminiscent of the result in [3] where, under an assumption of limited
total crawl capacity, “To improve freshness, we should penalize elements that change too
often” even to the point of never refreshing some pages which change too quickly. This
behavior is, of course, contingent on our choice of loss function: pages are either fresh of
stale and all stale pages are equally bad, regardless of how many times they have changed.
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Fig. 1: Comparison of the modeled total cost per hour (green) with mean of simulated cost
per hour (red) as a function of crawl interval length relative to ∆, for ∆ = 24 and
Cc = Cs = 1.

Also notice that for a given change period ∆i the fractional crawl time ri is, unsurprisingly,
a function of Cc/Cs.

In Figure 2, the colors represent the optimal ri for each combination ofCc andCs when
∆ = 24, by iteratively finding the minimum total cost. The contour lines show the levels
where the optimal ri is constant. For example, ri = 0.8 is the minimum cost solution in
the case where the cost of a single crawl is approximately four times the cost of an hour of
staleness. By contrast, if Cs = 4 × Cc, the minimum cost ratio is about ri = 0.15. The
solutions to the optimal cost above match those derived as a solution to the formula above.

3.3 Optimal solutions for varying ∆

As ∆ varies, the optimal re-crawl ratio also varies. Based on our optimal formulation for
ri given fixed costs of crawl and staleness, the right choice of ri quickly becomes very
small as ∆ get larger. This effect is primarily due to the amortization of crawl costs over
longer change intervals. For example, if the true ∆ of a page is 200 hours, the expected
crawls per hour from crawling the page at r = 1 is 1/200, and unless the crawl cost, Cc, is
much larger than the cost of being stale for an hour, the risk of being stale will dominate
the optimization. This result makes sense intuitively: for a page that changes rarely, crawls
that are “frequent” with respect to the time between changes are still quite cheap on average
per hour.

Figure 3 demonstrates this effect for different combinations of Cs and Cc over a wide
range of ∆. Each line in the plot represents the optimal r for a different combination
of cost parameters, as the true ∆ varies. The blue line shows the case where the two cost
parameters are equal. AsCc is relatively larger thanCs (green line), the optimal r increases
for all values of ∆.

The method here correctly chooses a subsequent crawl interval to balance external costs
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Fig. 2: Cost-minimizing crawl interval, expressed as the ratio ri for fixed ∆i = 24hours.

Fig. 3: Cost minimizing interval as a ratio of crawl interval to true change period.
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Fig. 4: Illustration of two different fixed crawl cycles over time, where each blue circle is
a page update, and a filled diamond is an observation of zij = 1

based on a known distribution of changes. The more practical question is whether these
results will hold in the case where the estimator is simultaneously attempting to converge
to the true value while choosing optimal subsequent intervals to maintain freshness of the
corpus.

3.4 Asymptotic Behavior
Figure 3 visually suggests that the optimal ratio of crawl interval to ∆ flattens out as ∆
grows larger, and therefore that there could be an asymptote where the optimal interval
would continue to grow linearly with ∆. Does this hold as ∆ increases? What is the
behavior of the optimal interval as ∆i →∞?

Let z = Cc/(Cs∆i), which goes to 0, so that er = (1 + r) 1
1−Cc/(Cs∆i)

= (1 +

r) 1
1−z ' (1 + r)(1 + z). Since r → 0 we may also approximate er ' 1 + r + r2

2 to get

1 + r + r2

2 ' 1 + r + z(1 + r). This gives r '
√

2z. Substituting back gives an optimal
crawl interval as ∆i →∞ of

ti '
√

2∆i
Cc
Cs

The optimal crawl interval grows as the square root of the change interval as the change
interval gets large. The intuitive reason for this is that the cost of a crawl is amortized over
longer and longer time periods, reducing it’s cost relative to the cost of staleness.

4 Estimators for Rate of Change

In the previous section, we considered the problem of deciding how often to crawl when the
true rate of change was known from the beginning. However, in a practical setting, there is
always a period where a page has been introduced to the corpus but the rate of change has
not been accurately estimated.

4.1 Definitions
In the data observed by a crawler, we observe only zij = Indicatorxij>0, due to the fact
that the crawler can only discern that the re-sampled page matches or does not match the
page collected in the previous sample. Any additional changes during the time window
between samples are invisible to the crawler. As a result, the collected data is censored no
occurrence counts greater than 1 can be accurately observed for a single interval.
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4.2 Simple Estimators
The simplest way to approach this problem is to assume that the crawler samples each page
at equal intervals every time, such that the cij are equal for all i and all j. The nave estimator
for λ [13] is λ̂i = (

∑
j zij)/(

∑
j tij). Figure 1 shows the problem with the nave estimator

under censored data. The first row of the diagram shows the updates of a single URL over
time, and the second two rows show crawl arrivals of crawlers that sample at a fixed interval
of C and 2C respectively over a total time of T = 8C. Given complete data, we would
estimate λ̂i = 7/T . However, given censored data, Crawler 1 using the nave estimate will
estimate λ̂i = 6/T , and Crawler 2 will estimate λ̂i = 4/T . As a result, the estimates are
persistently biased with respect to the true value as a function of the true value and the size
of the crawl interval.

4.3 Estimators for Censored Data
Cho and Garcia-Molina (2002) derive a Maximum Likelihood Estimate (MLE) for the
case of a regular crawler with interval C that has significantly smaller bias than the nave
estimator for larger ratios of C/∆ and a reasonably small sample size. Their estimator is
created in terms of the ratio of C/∆ and is given by

r̂i =
∆i

C
= −log

(∑j(1− zij) + 0.5
n+ 0.5

)
, (1)

where n is the number of intervals of length C observed over the total time.
Cho and Garcia-Molina (2002) also propose an irregular sample MLE for the case of a

fixed set of training samples on each page. For this estimate, we denote the length of crawl
intervals where a change was observed as ti,c(l) for l = 1, L (the total number of changed
intervals observed), and ti,u(k) for k = 1,K are the set of intervals for the ith page where
no change was observed. Then solving for λi:

L∑
l=1

ti,c(l)

eλiti,c(l) − 1
=

K∑
k=1

ti,u(k). (2)

Asymptotic performance of this estimator depends on assumptions about the distribu-
tion of crawl intervals tij . The estimator is also undefined at two key points: if no changes
have yet occurred and if changes have occurred in all sampled intervals. In these cases,
Cho and Garcia-Molina recommend a sensible substitute: if the page has never changed,
use the sum of all time intervals sampled so far, and if the page has always changed, use
the minimum interval sampled so far.

There are two important situations where irregular samples are an important compo-
nent of this estimation problem. First, practical constraints may preclude an effective web
crawler from producing precisely equal sample intervals. For example, a crawler may be
massively optimized, and have multiple threads competing for a fixed amount of band-
width. Similarly, a single web server may be slow or reach a maximum allowable limit of
crawler fetches. As a result, individual fetches of a web page may be delayed in an unpre-
dictable way based on the overall system. Second, a system may deliberately vary crawl
intervals in an effort to establish the best estimate of rate of change or otherwise optimize
the freshness of the results. .

4.4 Estimation in an Evolving Corpus
The methods considered so far assume that estimation is being done at the end of a set of
training data. However, for our problem we want to consider the case where the corpus
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of web pages known by the estimator is continuously evolving. Old pages drop out of
the estimation, and more importantly, new pages appear. In this setting, the distribution
of pages previously observed can be used to improve estimator performance on the initial
observations of a page. Grimes and Ford [9] propose a modified estimator that utilizes a
prior distribution to improve the initial steps of estimation compared to the the MLE in Cho
and Garcia-Molina [4] alone.

Instead of using an analytic prior, the modified estimator initializes estimation by using
two pseudo-datapoints that represent the prior likelihood of the true ∆, then chooses the
first crawl intervals based on the prior mean. Subsequent crawl intervals are guided by the
estimated ∆ at each iteration. This mechanism avoids issues that arise in the MLE when
no changes (or all changes) have been observed, and allows the prior to be matched to the
type of pages in the corpus easily.

For our practical estimation problem, we will use this modified estimator with a prior
sample of two pseudo-datapoints, a change observed after 1 hour and no change observed
after 57 hours. These two points produce the best match (using the same method employed
in [9]) to the prior likelihood observed in a sample of 10,000 web pages from the Google
web index.

5 What are the costs and risks of with not knowing ∆?

As developed above, in the general case we are presented with a new URL for which we
do not know the true value of ∆. In this section we present simulation and some analytic
results which quantify the cost of not knowing ∆, and hence having to iteratively estimate
it. First, we investigate the issue of the total cost of not knowing ∆. Second, we study
when we pay such a price in various scenarios. Finally, we look at the risk of extremely
stale webpages in the case of unknown ∆.

5.1 The total cost of estimating ∆

A starting point for assessing the costs of not knowing ∆ is the comparison of the overall
cost for comparable cases of known and unknown ∆. Figure 5 shows the average cost per
hour based on simulating N = 1000 observation periods of 1000 hours when Cs = Cc =
1, r = 1

3 (so C = 8), and ∆ = 24 in the known (blue) and unknown (red) cases. Also
displayed the the theoretical results (green). Two aspects of Figure 5 deserve comment.
First, the lines shown all suggest the same minimizing fraction (i.e., value along the x-
axis). Second, the vertical difference in the known and unknown ∆ case curves may be
regarded as the average per hour cost difference for the cases (in 1000 hour observation
periods), and shows that we pay a price for having to estimate ∆ in the unknown case.

5.2 The cost over time of estimating ∆

The next question looks at when these extra cost of the unknown case arises. As alluded to
above, it may be that the average cost depends on the length of the observation period. Here
we focus on two main scenarios, beginning with the same simulation setup as in Section
5.1. That is, the crawl fraction for both the unknown and known case is the cost-minimizing
value. This is an artificial best case; in reality the cost-minimizing value would be unknown
if the estimate were also unknown. However, here we use the optimal factor in simulation
to demonstrate the effect of the estimation variability separate from the choice of interval
scaling. The results give us a lower bound on the cost paid for estimation. In Figure 6,
we ran the simulations over observation periods of 12,000 hours. We illustrate a much
longer observation period to show the asymptotic behavior of the cost difference over time.
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Fig. 5: The overall cost of estimating ∆. This figure shows theoretical (green), simulated
known ∆ (blue), and simulated unknown ∆ (red) average costs per hour using the
cost-minimizing fraction.

Fig. 6: Difference in cost over time for known minus unknown ∆ cases, with Cs = Cc =
1, r = 1

3 , ∆ = 24, and N = 200 simulations of 12,000 hour observation periods.
The orange line marks the mean of the simulations, the yellow a difference with
lag=500, and the black lines the interquartile range of the simulation values.
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Fig. 7: Difference in cost over time for known minus unknown ∆ cases, with Cs = Cc =
1, r = 0.8 for the known case and r = 1

3 for the unknown case, ∆ = 24, and
N = 1000 simulations of 1000 hour observation periods. he orange line marks the
mean of the simulations, the yellow a difference with lag=100, and the black lines
the interquartile range of the simulation values.

The flatness of the orange mean curve and the lag=500 differences shown in the yellow
line are consistent with asymptotic behavior. This means that we pay a price for having to
estimate ∆ in the unknown case, but the convergence of the estimator eventually reduces
the marginal cost (over time) to zero. The figure suggests the cost of not knowning ∆ is
largely borne in the first 1500 hours or so.

We next consider a different simulation setup. Here we still let Cs = Cc = 1 and
∆ = 24, but we use the suboptimal fraction 0.8 (so C = 19.2) for the known ∆ case and
the cost-minimizing fraction r = 1

3 (so C = 8) for the unknown ∆ case. Figure 7 shows
that cost for the unknown ∆ case with optimal fraction is less, over time, than the known
∆ case with suboptimal fraction. Rather than demonstrating asymptotic behavior, as in
Figure 6, we see a cost difference that increases linearly in time and favors the unknown ∆
case, after an initial period in the first few hours where the known ∆ case had lesser cost.
Indeed, the approximate slope of this linear trend is directly attributable to the difference
in expected costs given the fractions used. This result suggests that for a given observation
time and with the unknown ∆ case using the cost-minimizing fraction, we could find a
(non-optimal) fraction for the known ∆ case that would put the total costs over the period
at parity.

5.3 The chance of being “very” wrong about ∆

The initial estimation of ∆ introduces an increase in the average total cost that naturally
disappears for individual intervals as the estimator converges. However, a more interesting
question is whether the estimation process significantly increases the tail of the risk distri-
bution, that is, does estimation significantly increase the probability of a page being very
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Fig. 8: Side-by-side probability histograms of observed staleness periods for known (light
bars) and unknown (dark bars) ∆ cases, with Cs = Cc = 1, r = 1

3 , ∆ = 24, and
N = 1000 simulations of 1000 hour observation periods. Bins on the x-axis are
marked by the leading digit of the staleness time (e.g., 3.23 maps to bin 3.)

stale compared to the optimal choice of crawl interval relative to the true ∆?
When ∆ is known for a URL which is crawled with an unchanging fraction r = C

∆ ,
the crawl interval never varies and so the maximum amount of time a page can be stale is
C. However, when ∆ is unknown and estimated iteratively, even when the fraction does
not change1 the time selected for the next crawl does change with evolving estimates of
∆, which can be large, thereby leading to a risk of being “very” stale that is not present in
the known ∆ case. Such a threshold of “very” stale might vary in different contexts, but a
natural definition is the maximum amount of time a page can be stale in the known ∆ case,
C.2

In a simulation we tracked the risk of being “very” stale using this natural definition
(i.e., risk of being stale C or more hours.) In particular, we let Cs = Cc = 1, ∆ = 24, and
used the cost-minimzing fraction, r = 1

3 , for both known and unknown ∆ cases with the
same simulated data. We ran N = 1000 simulations for 1000 hours each for both cases.
Figure 8 shows side-by-side probability histograms (truncated at 12 hours of staleness on
the x-axis) for the known (light bars) and unknown (dark bars) cases and reveals the heavier
tails of the unknown case compared with the known case. This result follows from the
iterative, changing nature of the crawl times in the unknown case and the fixed 8 hour
crawl time in the known case.

All mass beyond 8 hours for the unknown case falls into the “very” stale category, and
for the simulation accounted for 9.1% of all crawl intervals. We note that this percentage is

1 From Section 3.2, calculating the cost minimizing fraction requires knowledge of ∆ or estimation. In the
present section we use the ostensibly unknown cost-minimizing fraction to present a best-case scenario for the
unknown ∆ case. In practice we would suffer additional costs for uncertainty in estimating the fraction.

2 We do not mathematically formalize this notion, but we could construct a cost function C(m)s that is linear
until time m and then is significantly more costly once M is reached.
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related to the rate of convergence of the estimator of ∆ and declines when we look at longer
time periods. For example, when using 12,000 hours of observation for each simulated run,
the percentage of “very” stale crawl intervals falls to 3.8%.

Finally, we note that the known and unknown ∆ cases had somewhat similar propor-
tions of crawl intervals with no change, 28.3% for the known and 27.1% for the unknown
cases, respectively (for the 1000 hour observation simulations). This probability is avail-
able analytically for the known case, and the unknown value tends to the known value for
longer observation periods; for example, when using 12,000 hour observation periods the
values are (again) 28.3% and 28.2% for the known and unknown cases, respectively.

6 Discussion and Extensions

The primary goal of this work is to determine optimal crawl intervals under a number
of situations: while doing estimation, while fairly sure of the estimate, when crawls are
expensive, and when crawls are cheap. We find that, intuitively, estimating the parameters
∆ increases the probability of paying a much higher staleness cost, though estimating too
low can also increase the crawl cost. We also find that the optimal ratio of crawl interval to
true delta, on average, is the same in the estimation as in the known ∆ case, but just with
higher total cost.

In practice, bounding the probability of being overly stale due to estimation, as in Sec-
tion 5.3 can be used to choose a more conservative ratio of crawl interval to reduce the risk
of individual failures rather than the aggregate cost. Although an exact strategy is not dis-
cussed here, experimentation suggests that this technique can be applied effectively based
on either the risk of staleness of the number of crawls should a hard constraint on total
crawls per page be required.
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