
Normal Form Bisimulation for Typed Calculi:
Syntactic Minimal Invariance

(Draft March 8, 2007)

Soren B. Lassen
Google, Inc.

soren@google.com

Paul Blain Levy
University of Birmingham, U.K.

pbl@cs.bham.ac.uk

This note uses the normal form bisimulation theory for
recursively typed call-by-push-value (CBPV) [1] to prove a
“syntactic minimal invariance” result.

• SOREN: NEED TO CHANGE FUNCTION APPLI-
CATION SYNTAX TO OPERAND-FIRST EVERY-
WHERE

Given closed types A, B, we define the function types:

A† def= A → FA, B† def= UB → B.

and closed terms `c γv
A : A† and `c γc

B : B†. More gen-
erally, to deal with recursive types, we define in Figure , by
structural induction on A and B, open terms:

Γ `c γv
Γ,A : A[Γ]†, Γ `c γc

Γ,B : B[Γ]†.

where Γ = ~X :
−−→
UA†, ~Y :

−−→
UB† (we take the liberty to use

~X and ~Y as term identifiers in Γ, γv
Γ,A, γc

Γ,B and as type

identifiers in A and B); ~A and ~B are closed types; A and B
are open types: ~X, ~Y `v A type, ~X, ~Y `c B type; and [Γ]
denotes the type substitution [~A/~X, ~B/~Y].

Proposition 1. γv
A[Γ] = γv

Γ,A[
−−→
γv

A/X,
−−→
γv

B/Y] and

γc
B[Γ] = γc

Γ,B [
−−→
γv

A/X,
−−→
γv

B/Y].

Proof. By structural induction on A and B.

So, for closed recursive types RecX.A, RecY .B,

γv

A[RecX.A/X]
= γv

X:(RecX.A),A[γv
RecX.A/X],

γc

B[RecY .B/Y]
= γv

Y :(RecY .B),B [γv
RecY .B/Y].

Observe that

x : UB ` γv
UB(x), nil ∗ return x‡, nil

x : UFA ` γc
FA(x),K ∗ forcex, K‡

γv
Γ,UB = λx. return thunk(γc

Γ,B(x))

γv
Γ,1 = λ〈 〉.〈 〉

γv
Γ,A1×A2

= λ〈x1, x2〉. γv
Γ,A1

(x1)
to y1. γ

v
Γ,A2

(x2)
to y2. return 〈y1, y2〉

γv
Γ,Σi∈IAi

= λ{〈i, x〉. γv
Γ,Ai

(x) to y. return 〈i, y〉}i∈I

γv
Γ,Xi

= forceXi

γv
Γ,RecX.A = recX. λfoldx. γv

Γ,X:U(RecX.A)[Γ]†,A(x)
to y. return fold y

γc
Γ,FA = λx. forcex to y. γv

Γ,A(y)

γc
Γ,A→B = λx. λy. γv

Γ,A(y)
to z. γc

Γ,B(thunk(forcex(z)))

γc
Γ,Πi∈I

= λx. λ{i. γc
Γ,Ai

(thunk(πi(forcex)))}i∈I

γv
Γ,Y i

= forceY i

γv
Γ,RecY .B = recY . λx. fold

γc
Γ,Y :U(RecY .B)[Γ]†,B

(thunk(unfold(forcex)))

Figure 1. Definitions of γv
Γ,A and γc

Γ,B

1

where x‡
def= thunk(γc

B(x)) and K‡ def= to y. γv
A(y)::K,

provided x is of type UB and K is from type FA. More
generally:

Lemma 2. If ~x :
−−→
UB `v p(~x) : A and Γ | FA `k K : FC

then

Γ, ~x :
−−→
UB ` γv

A(p(~x)),K ∗ return p(~x‡),K

and, if Γ `v V : UB, ~x :
−→
UA | B `k q(~x;K) : D, and

Γ | FC `k K : D,

Γ, ~x :
−→
UA ` γc

B(V), q(~x;K) ∗ forceV, q(~x‡;K‡).

Proof. By structural induction on p and q.

Theorem 3 (Syntactic minimal invariance). For all closed
value types A and closed computation types B,

`c γv
A h λz. return z : A†,

`c γc
B h λz. force z : B†.

Proof. The equations follow from

z : A `c γv
A(z) h return z : FA,

z : UB `c force z‡ h force z : B,

which we prove by the exhibiting the following normal form
bisimulation R which relates

~x :
−→
UA ` γv

A(p(~x)), nil R p(~x), nil : FA

~y :
−−→
UB, z : UB ` force z‡, q(~y; nil) R

force z, q(~y; nil) : FC

whenever ~x :
−→
UA `v p(~x) : A and ~y :

−−→
UB | B `k

q(~y; nil) : FC. By Lemma 2, R is a normal form bisimu-
lation.

References

[1] S. B. Lassen and P. B. Levy. Normal form bisimulation for
typed calculi. Conference submission, 2007.

2

A Proofs

Here are some of the cases in the proof of Lemma 2.
Case A = A1 ×A2. Then there exist p1, ~x1, ~B1, p2, ~x2, and ~B2 such that

~x = ~x1, ~x2,

~B = ~B1,
~B2,

p(~x) = 〈p1(~x1), p2(~x2)〉,

~xi :
−−→
UBi `v pi(~xi) : Ai,

for i ∈ {1, 2}. We use the abbreviations M [V1, V2]
def= γv

A1
(V1) to y1. N [y1, V2] and N [V1, V2]

def=
γv

A2
(V2) to y2. return 〈V1, y2〉 in the following calculation.

γv
A(p(~x)), K

γv
A, p(~x)::K =

λ〈z1, z2〉.M [z1, z2], 〈p1(~x1), p2(~x2)〉::K ∗

M [p1(~x1), p2(~x2)], K ∗

γv
A1

(p1(~x1)), to y1. N [y1, V2]::K ∗ by the I.H.

return p1(
~
x‡1), to y1. N [y1, p2(~x2)]::K ∗

γv
A2

(p2(~x2)), to y2. return 〈p1(
~
x‡1), y2〉::K ∗ by the I.H.

return p2(
~
x‡2), to y2. return 〈p1(

~
x‡1), y2〉::K

return 〈p1(
~
x‡1), p2(

~
x‡2)〉, K =

return 〈p(~x‡)〉 K

Case A = Σi∈IAi. Then there exist i ∈ I and p′ such that p(~x) = 〈i, p′(~x)〉 and ~x :
−−→
UB `v p′(~x) : Ai.

γv
A(p(~x)), K

γv
A, p(~x)::K =

λ{〈i, x〉. γv
Ai

(x) to y. return 〈i, y〉}i∈I , 〈i, p′(~x)〉::K ∗

γv
Ai

(p′(~x)) to y. return 〈i, y〉, K
γv

Ai
(p′(~x)), to y. return 〈i, y〉::K ∗ by the I.H.

return p′(~x‡), to y. return 〈i, y〉::K

return 〈i, p′(~x‡)〉, K =
return p(~x‡), K

Case B = Πi∈IBi. Then there exist i ∈ I and q′ such that q(~x;K) = i::q′(~x;K) and ~X :
−→
UA | Bi `k q′(~x;K) : FC.

γc
B(V), q(~x;K) ∗

λ{i. γc
Γ,Bi

(thunk(πi(forceV)))}i∈I , q(~x;K) =
λ{i. γc

Γ,Bi
(thunk(πi(forceV)))}i∈I , i::q′(~x;K)

γc
Γ,Bi

(thunk(πi(forceV))), q′(~x;K) ∗ by the I.H.

force thunk(πi(forceV)), q′(~x‡;K) ∗

πi(forceV), q′(~x‡;K)

forceV, i::q′(~x‡;K) =
forceV, q(~x‡;K)

Case B = RecY .B0. Then there exists q′ such that q(~x;K) = unfold::q′(~x;K) and ~X :
−→
UA | B′ `k q′(~x;K) : FC,

where B′ def= B0[B/Y]. Observe that

γc
B = recY . λx. fold γc

Y :UB†,B0
(thunk(unfold(forcex)))

3

and γc
Y :UB†,B0

[thunk(γc
B)/Y] = γc

B′ and, if L is a stack from type B†,

γc
B , L ∗ λx. fold γc

B′(thunk(unfold(forcex))), L (1)

γc
B(V), q(~x;K)

γc
B , V ::q(~x;K) ∗ (1)

λx. fold γc
B′(thunk(unfold(forcex))), V ::q(~x;K)

fold γc
B′(thunk(unfold(forceV))), q(~x;K) =

fold γc
B′(thunk(unfold(forceV))), unfold :: q′(~x;K)

γc
B′(thunk(unfold(forceV))), q′(~x;K) ∗ by the I.H.

force thunk(unfold(forceV)), q′(~x‡;K‡) ∗

unfold(forceV), q′(~x‡;K‡)

forceV, unfold::q′(~x‡;K‡) =
forceV, q(~x‡;K‡)

4

