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Abstract: Die zunehmende Vernetzung moderner Computersysteme produziert ge-
waltige Datenmengen, deren Behandlung die heutige Informatik vor unzählige Proble-
me stellt. Traditionelle Algorithmen, deren Laufzeit zu stark von der Größe der Daten
abhängt, sind häufig nicht anwendbar. Oft sind die Eingabedaten sogar zu groß für die
verfügbaren Speichermedien. Wir stellen neue, grundlegende Algorithmen zur Analy-
se gewaltiger Datenmengen vor, die unter minimalen Anforderungen an den Speicher
der Computersysteme beweisbar gute Zusammenfassungen der Daten berechnen.

Zunächst erarbeiten wir grundlegende Ergebnisse zum Ziehen von Stichproben aus
dynamischen Datenströmen. Mit Hilfe dieser Stichproben können vielfältige Aussagen
über die Eingabedaten getroffen werden, was wir anhand von Beispielen beweisen.

Anschließend wenden wir uns dem Clustering gewaltiger Datensätze zu. Wir ent-
wickeln eine Methode, große Datenmengen zu sogenannten Coresets zusammenzufas-
sen. Die Methode erzeugt beweisbar k-means- und k-median-Clusterings mit beliebig
guter Approximationsgarantie und ist anwendbar in vielen verschiedenen Modellen:
Die Clusterings können mit wenig Speicher für dynamische Datenströme berechnet
werden, sie lassen sich in sublinearer Zeit durch Bereichsanfragen erstellen, und auch
sich bewegende Punkte können effizient zusammengefasst werden. Eine Implemen-
tierung zeigt, dass die Methode auf großen realen Testdaten gute Clusterings deutlich
schneller berechnen kann als häufig angewendete traditionelle Algorithmen.

Schließlich beschäftigen wir uns mit der Analyse der Struktur von großen Graphen
wie dem Webgraph. Wir entwickeln neue Methoden, um die Anzahl von Teilgraphen
(z.B. Dreiecken) eines Graphen zu zählen, der als Datenstrom von Kanten gegeben ist.

1 Einführung

Einer ausführlichen Studie der Universität Berkeley zufolge [Lyman and Varian 2003]
wurden im Jahr 2002, dem letzten Jahr, für welches solche Daten vorliegen, etwa 23 Exa-
bytes (d.h. 23 Millionen Terabytes) an Informationen erzeugt. Nur etwa 20% dieser Infor-
mation können auf Papier oder magnetischen und optischen Speichermedien gespeichert
werden. Der Großteil jedoch wird nach der Erzeugung über Datenkanäle geschickt und
daraufhin sofort wieder verworfen.

Neben Telefon-, Radio- und Fernsehsignalen bestehen diese vergessenen Daten vor al-
lem aus Informationen über Internetverbindungen. Ein Beispiel ist der Internetverkehr an
einem großen Backbone Router. Selbstverständlich ist der Router nicht in der Lage, al-
le von ihm verarbeiteten Pakete lokal zu speichern. Dennoch ist es aus vielen Gründen



ratsam, Statistiken über die verarbeiteten Pakete aufrechtzuerhalten, um später daraus
Rückschlüsse auf den gesamten Internetverkehr zu ziehen. Datenstromalgorithmen versu-
chen daher, die Daten sequentiell in ihrer Reihenfolge zu lesen und dabei nur eine kleine
Zusammenfassung zu speichern. Da von ihren Resultaten häufig wichtige Entscheidun-
gen abhängen (Einführung neuer Backbones, Ändern von Netzwerkstruktur), sind Daten-
stromalgorithmen erforderlich, die Zusammenfassungen mit beweisbar hoher Genauigkeit
aufrechterhalten.

Selbst für den Großteil der gespeicherten Daten sind Datenstromalgorithmen in vielen
Fällen sinnvoll. Gemäß der oben zitierten Studie werden 90% der gespeicherten Daten
auf Festplatten gehalten, von denen sie in hoher Geschwindigkeit nur sequentiell wieder
ausgelesen werden können.

In meiner Dissertation [Fra06] stelle ich neue, grundlegende Algorithmen vor, um Statis-
tiken in solchen Szenarien aufrechtzuerhalten. Die Algorithmen arbeiten mit wenig Spei-
cher und können während des Lesens eines großen Datenstromes uniforme Stichproben
und kompliziertere Strukturen wie ε-Nets oder sogar komplette Clusterings der Daten auf-
rechterhalten. Für alle Algorithmen werden beliebig gute Approximationsgarantien bewie-
sen. Aufgrund ihrer Allgemeinheit sind die Algorithmen in unzähligen Bereichen einsetz-
bar.

2 Dynamische Datenströme

Im Großteil dieser Arbeit gehen wir von dem allgemeinen Modell der dynamischen Daten-
ströme aus. Ein solcher Datenstrom besteht aus Einfüge- und Löschoperationen von Ele-
menten in eine (Multi-)MengeQ, die im allgemeinen zu groß ist, um sie zu speichern. Um
Aussagen über die Struktur dieser großen Menge zu treffen, brauchen wir Informationen
über die Beziehungen zwischen einzelnen Elementen, vor allem über deren Ähnlichkeiten
und Unterschiede. Da das Berechnen von Unterschieden aller Paare von Elementen nicht
möglich ist, wird in der Praxis häufig eine Distanzfunktion zwischen solchen Paaren im-
plizit definiert: Zuerst bildet man alle Elemente aus Q durch eine Abbildung α : Q→ Rd
auf Punkte in einem d-dimensionalen Raum ab. Die Distanz zwischen zwei Elementen
p, q ∈ Q wird dann durch den euklidischen Abstand d(α(p), α(q)) bestimmt. Der dyna-
mische Datenstrom von Einfüge- und Löschoperationen von Elementen in Q transformiert
sich somit in einen Datenstrom aus Einfüge und Löschoperationen von Punkten aus Rd.

Dynamische Geometrische Datenströme. Unser Modell geht daher aus von einem Da-
tenstrom, der aus m Einfüge- und Löschoperationen von Punkten des diskreten euklidi-
schen Raumes {1, . . . ,∆}d in eine dynamische (Multi-)Menge Q besteht. Die Zeit- und
Platzkomplexität aller unserer Algorithmen wird nur polylogarithmisch von ∆ abhängen.

Uniforme Stichproben aus dynamischen Datenströmen. Wir beantworten zunächst
die Frage, wie man effizient uniforme Stichproben aus der MengeQ erhält. Die Schwierig-
keit liegt hier darin, dass die Menge unter vielen Einfügeoperationen stark wachsen kann.
Schrumpft sie anschließend durch Löschoperationen wieder auf eine kleine Anzahl von



Elementen, müssen wir diese wenigen Elemente exakt bestimmen können. Wir stellen ver-
schiedene Methoden vor, um während des gesamten Datenstromes uniforme Stichproben
der Menge Q aufrechtzuerhalten. Unser Algorithmus benötigt dazu nur eine Anzahl von
Speicherbits, die polylogarithmisch in der Größe des Datenstromes ist. Auch die Zeit, die
benötigt wird, um eine Einfüge- und Löschoperation zu verarbeiten, ist polylogarithmisch
in der Größe des Datenstromes. Unter mehreren Ergebnissen zum Ziehen von Stichproben
aus dynamischen Datenströmen möchte ich eines exemplarisch angeben:

Theorem 1 [FIS05] Gegeben sei eine Sequenz von Einfüge- und Löschoperationen von
Punkten des diskreten Raumes {1, . . . ,∆}d in eine MengeQ. Es existiert eine Datenstruk-
tur, die zu jedem Zeitpunkt des Datenstromes mit Wahrscheinlichkeit 1− δ eine Stichprobe
von s Punkten r0, . . . , rs−1 ∈ Q zurückgibt und mit Wahrscheinlichkeit δ einen Rückga-
bewert FAIL. Die zurückgegebenen Samples sind unabhängig voneinander gezogen und
können daher Duplikate beinhalten. Die statistische Differenz zwischen der Verteilung ei-
nes dieser Samples und einer uniformen Verteilung ist höchstens δ

∆d , d.h. insbesondere
auch Pr [ri = p] = 1

|Q| ±
δ

∆d für jedes p ∈ Q.

Der Algorithmus arbeitet mit höchstens O
((
s+ log(1/δ)

)
· d2 · log2(∆/δ)

)
Speicher-

bits.

In der Dissertation werden weiterhin viele Verallgemeinerungen und Spezialisierungen
der Sampling-Technik betrachtet. Unabhängig von unserer Veröffentlichung [FIS05] wur-
de ein ähnliches Ergebnis auch von [Cormode, Muthukrishnan und Rozenbaum 2005]
erreicht. Diese zwei parallelen Veröffentlichungen bilden inzwischen die Grundlage für
die approximative Lösung vieler Probleme auf dynamischen Datenströmen.

Anwendungen der Stichproben. Wir möchten nun exemplarisch einige direkte Anwen-
dungen des Samplings in Datenströmen angeben. Das Aufrechterhalten von Samples gibt
uns beispielsweise die Möglichkeit, zu jedem Zeitpunkt des Datenstromes Anfragen über
die Verteilung der Objekte in der aktuellen Menge Q (z.B. ”Wieviele Punkte sind in fol-
gendem Rechteck enthalten?“ ) approximativ zu beantworten. Solche Anfragen haben ein
sehr breites Anwendungsfeld in Datenbanken, der Analyse von Internetverbindungen und
unzähligen anderen Bereichen. In den Jahren seit den zwei parallelen Veröffentlichungen
über Stichproben in Datenströmen wurden beispielsweise von Telefonunternehmen große
Systeme gebaut, die diese Techniken einsetzen, um Statistiken über den Telefon- und Da-
tenverkehr zu erstellen.

Definition 2.1 (Bereichsräume, VC-Dimension) Sei X eine Menge von Objekten und R
eine Familie von Untermengen von X . Wir nennen dann das System Σ = (X,R) einen
Bereichsraum (range space). Die Elemente aus R heißen Bereiche von Σ. Falls X eine
endliche Menge ist, dann heißt Σ endlicher Bereichsraum.

Wir sagen, dass A ⊂ X vollständig von R zerteilt wird, falls {A ∩ r|r ∈ R} = 2A. Die
Vapnik-Chervonenkis-Dimension (VC-Dimension) des Bereichsraumes Σ = (X,R) ist
die Größe der größten Teilmenge von X , die vollständig von R zerteilt wird.

Ein Beispiel für einen Bereichsraum ist die Menge aller achsenparallelen Rechtecke. Man
kann zeigen, dass ihre VC-Dimension genau 4 ist.



Definition 2.2 (ε-Netze, ε-Approximationen) Sei Σ = (X,R) ein endlicher Bereichs-
raum. Eine TeilmengeN ⊂ X heißt ε-Netz, fallsN∩r 6= ∅ für jedes r ∈ Rmit |r| ≥ ε|X|.

A ⊆ X heißt ε-Approximation, falls für jedes r ∈ R gilt:
∣∣ |A∩r|
|A| − |r|

|X|
∣∣ ≤ ε.

Haben wir eine ε-Approximation einer Punktmenge, so können wir nach dem Einlesen
des Datenstromes beispielsweise Anfragen über den Anteil der Punkte in einem gegebe-
nen Rechteck bis auf einen beliebig kleinen Fehler ε approximativ beantworten. Dies gilt
für alle Anfragen über den Anteil der Punkte in Bereichen mit kleiner VC-Dimension.
Mit Hilfe unserer Stichprobentechnik kann man solche ε-Approximationen und ε-Netze
effizient in dynamischen Datenströmen aufrechterhalten:

Theorem 2 [FIS05] Gegeben sei eine Sequenz von Einfüge- und Löschoperationen von
Punkten des diskreten Raumes {1, . . . ,∆}d in eine MengeQ und ein Bereichsraum (X,R)
der VC-Dimension D. Es existiert eine Datenstruktur, die zu jedem Zeitpunkt des Daten-
stromes mit Wahrscheinlichkeit 1 − δ eine Menge A von Õ(D+log(1/δ)

ε2 ) Punkten zurück-
gibt, die eine ε-Approximation von (X,R) ist. Der Algorithmus arbeitet mit höchstens
O

(
1
ε2

(
D log D

ε + log 1
δ

)
d3 log3 ∆

δ

)
Speicherbits.

Weiterhin existiert ein Algorithmus, der zu jedem Zeitpunkt mit Wahrscheinlichkeit 1−δ ei-
ne MengeN von Õ(D+log(1/δ)

ε ) von Punkten zurückgibt, welche ein ε-Netz von (X,R) ist.

Der Algorithmus benutzt höchstens O
(
( log(1/δ)

ε + D
ε log D

ε ) · d2 · log2(∆/δ)
)

Speicher-
bits.

Als weitere Anwendung zeigen wir in der Dissertation, wie der Wert eines minimalen
Spannbaumes, der alle momentanen Punkte der Menge Q verbindet, effizient geschätzt
werden kann, wenn die Punkte als dynamischer Datenstrom gegeben sind. Der Wert des
minimalen Spannbaumes könnte beispielsweise Aufschluss geben über die benötigte Ener-
gie einer Kommunikationsstruktur, die alle Punkte verbindet.

Theorem 3 [FIS05] Gegeben sei eine Sequenz von Einfüge- und Löschoperationen von
Punkten des diskreten Raumes {1, . . . ,∆}d in eine Menge Q. Es gibt einen Datenstromal-
gorithmus, der zu jedem Zeitpunkt mit Wahrscheinlichkeit 1−δ eine (1+ε)-Approximation
des Wertes des euklidischen minimalen Spannbaumes von Q bestimmt. Der Algorithmus
benötigt höchstens O(log3(1/δ) · (log(∆)/ε)O(d)) Speicherbits.

3 Die Coreset - Methode

Wir wenden uns nun dem Problem des Clusterings großer Datenmengen zu. Das Problem,
Daten zu sinnvollen Einheiten zusammenzufassen, gehört zu den am meisten untersuch-
ten Optimierungsproblemen überhaupt und ist häufig der erste Schritt, die Struktur großer
Datenmengen zu verstehen. Ein sinnvolles Zusammenfassen der Datenelemente kann wei-
terhin die Datenmenge auf ein Maß reduzieren, welches die Ausführung verschiedener
aufwändiger Algorithmen erst ermöglicht.



Wir beschäftigen uns unter anderem mit dem wohl beliebtesten Clustering-Verfahren, dem
k-means Clustering. Wir zeigen erstmals eine Methode, eine (1+ε)-approximative Lösung
der k-means Zielfunktion aufrechtzuerhalten, wenn die Punkte als dynamischer Daten-
strom gegeben sind. Dies führt direkt zu der Möglichkeit, sinnvolle Zusammenfassungen
riesiger Datenmengen zu erstellen, ohne die Daten selbst jemals speichern zu müssen.

Unsere Methode berechnet aus der riesigen Eingabepunktmenge eine sehr kleine gewich-
tete Punktmenge, das sogenannte Coreset. Dabei stellt sie sicher, dass auf dem Coreset
berechnete Clusteringlösungen immer auch (1 + ε)-approximative Clusteringlösungen für
die Ausgangsmenge sind.

Definitionen der Probleme und Begriffe. Wir definieren zunächst einige häufig ver-
wendete Clustering-Zielfunktionen. Als Eingabe setzen wir eine endliche gewichtete Punkt-
menge P ⊂ Rd und eine Funktion der Punktgewichte w : P → R+ voraus. Wir bezeich-
nen mit d(p, q) den Euklidischen Abstand zwischen zwei Punkten p, q ∈ Rd.

Definition 3.1 Das k-median Clusteringproblem fragt nach einer MengeC = {c1, . . . , ck}
von k Clusterzentren in Rd und einer Partition der Punkte P in k Cluster C1, . . . , Ck, so
dass Median(P,C,C1, . . . , Ck) :=

∑k
i=1

∑
p∈Ci

w(p) · d(p, ci) minimiert wird. In der
ungewichteten Version des Problems sind alle Punktgewichte 1. Für den Fall, dass die
Partition C1, . . . , Ck jeden Punkt dem nächsten Clusterzentrum zuordnet, definieren wir
die Kurzschreibweise Median(P,C) := Median(P,C,C1, . . . , Ck).

Das k-means Clusteringproblem fragt nach einer Menge von Clusterzentren und einer
Partition, so dass Means(P,C,C1, . . . , Ck) :=

∑k
i=1

∑
p∈Ci

w(p) · d2(p, ci) minimiert
wird.

Das MaxCut Clusteringproblem fragt nach einer Partition der Punkte in zwei Mengen S
und T , so dass

∑
p∈S

∑
q∈T d(p, q) maximiert wird.

In der Dissertation zeigen wir, dass relativ schwache Anforderungen an ein Problem aus-
reichen, um es mit unserer Coreset-Methode effektiv zu approximieren. Beispiele für Pro-
bleme, die diese Voraussetzungen erfüllen, sind neben den oben definierten Problemen
auch Average Distance, MaxMatching, und Maximum Travelling Salesman.

Definition 3.2 (Coresets) Sei P eine gewichtete Menge von n Punkten in Rd. Eine ge-
wichtete Punktmenge Pcore in Rd heißt ε-coreset für P (bzgl. des k-median problems),
wenn für jede Menge C von k Zentren gilt:
(1− ε) ·Median(P,C) ≤ Median(Pcore , C) ≤ (1 + ε) ·Median(P,C) .
Wir definieren ein Coreset für P bzgl. des k-means-Problems analog.

Die genaue Definition von Coresets für das MaxCut Problem ist etwas komplizierter. Co-
resets für das MaxCut-Problem sind gewichtete Punktmengen mit einer zugehörigen Ab-
bildung γ : P → Pcore . Wir verlangen, dass das Gewicht eines jeden Coresetpunktes dem
Gewicht der abgebildeten Punkte entspricht und dass für jede Partition der Punktmenge
die MaxCut-Zielfunktion approximiert wird durch die MaxCut-Zielfunktion der entspre-
chenden Partition der Coresetmenge. Eine genaue Definition (auch für Average Distance,



Maximum Matching, Maximum Travelling Salesman und verallgemeinerte Probleme) ist
in der Dissertation nachzulesen.

Beschreibung der Coreset-Methode anhand von k-Median. Wir nehmen an, dass alle
Punkte in einem Würfel der Seitenlänge 1 liegen, zum Beispiel [0, 1]d. Dies kann durch
einfaches Skalieren der Punktmenge erreicht werden. Weiterhin nehmen wir an, dass die
optimale Zielfunktion des Problems mindestens den Wert 1/∆̃ besitzt. Wir benötigen hier
nur eine sehr schwache Schranke an ∆̃, da der von unserer Methode benutzte Speicher und
Platz nur logarithmisch von ∆̃ abhängen wird.

Unsere Methode betrachtet Z verschieden große Gitter G0, . . . ,GZ−1 (für einen Parameter
Z = O(d · log(k · n · d · ∆̃))). Die Zellgröße einer Gitterzelle des Gitters Gi ist 1

2i . Jede
Zelle in Gi besteht daher aus 2d Zellen des Gitters Gi+1.

Unser Ziel ist es, in jedem Gitter die schweren Zellen zu identifizieren. Dies sind Zellen,
die mehr als eine bestimmte Anzahl von Punkten enthalten. Wir parametrisieren diese
Schranke durch einen Parameter δ, den wir später exakt festsetzen werden.

Definition 3.3 (Schwere Zellen) Wir nennen eine Zelle des Gitters Gi schwer, wenn sie
mindestens δ · 2i Punkte enthält.

Unsere Methode besteht aus zwei Phasen. In einer ersten Phase berechnen wir die Core-
setpunkte. In der zweiten Phase bestimmen wir das Gewicht der Coreset-Punkte.

Der Algorithmus der ersten Phase startet mit dem gröbsten Gitter G0. Er identifiziert alle
schweren Zellen in G0 (Das Gitter G0 besteht im Grunde nur aus einer schweren Zelle, die
die gesamte Punktmenge umfasst). Danach wendet er folgende iterative Methode auf allen
Gitterstufen an. Nehmen wir an, der Algorithmus hat die schweren Zellen im Gitter Gi
identifiziert. Er zerteilt nun iterativ jede schwere Zelle C ∈ Gi in 2d quadratische Unterzel-
len des Gitters Gi+1. Wir nennen C dann die Mutterzelle dieser Unterzellen. Wenn keine
dieser Unterzellen schwer ist, führt der Algorithmus einen Coreset-Punkt im Mittelpunkt
der Zelle ein. Andernfalls werden in der nächsten Iteration die schweren Unterzellen wei-
ter unterteilt. Die Unterteilung stoppt in jedem Fall, da zu einem bestimmten Zeitpunkt
eine schwere Zelle mehr als n Punkte enthalten müsste.

In der zweiten Phase bestimmt der Algorithmus das Gewicht der Coresetpunkte. Wir
können uns diese zweite Phase vorstellen als eine Zuordnung von Punkten der Ausgangs-
punktmenge zu den entsprechenden Coreset-Punkten. Das Gewicht eines Coresetpunktes
entspricht dann der Anzahl der zugeordneten Punkte aus der Eingangspunktmenge P . Der
Algorithmus ordnet die Punkte den Coresetpunkten so zu, dass jeder Punkt p ∈ P in der
kleinsten schweren Zelle verbleibt, in der er enthalten ist. Da Phase 1 sicherstellt, dass jede
schwere Zelle einen Coresetpunkt enthält, ist diese Invariante leicht zu erhalten.

Wir bezeichnen mit Pcore das vom Algorithmus berechnete Coreset und mit Opt den
besten erreichbaren Zielfunktionswert. In der Dissertation wurden die folgenden Eigen-
schaften bewiesen:

Lemma 3.4 Falls δ ≤ εd+1·Opt
4·k·10d·(1+logn)·d(d+1)/2 , dann istPcore ein ε-coreset fürP bezüglich

des k-median-Problems. Falls δ ≥ εd+1·Opt
8·k·10d·(1+logn)·d(d+1)/2 , ist die Größe des Coresets

Pcore beschränkt durch O(k · log n/εd+1).



Um ein ε-coreset zu berechnen, muss man daher nur noch einen entsprechenden Wert von
δ bestimmen. Dazu kann man eine untere und obere Schranke an die möglichen Werte von
δ herleiten. Man testet daraufhin für verschiedene Werte von j und δ := δ0 · 2j , ob das
berechnete Coreset die gewünschte Größe hat. Durch binäre Suche auf den Werten von
j kann man effizient den kleinsten Wert von j finden, so dass das entsprechende Coreset
die gewünschte Größe nicht überschreitet. Es ist leicht zu sehen, dass dieses Coreset nach
Lemma 3.4 dann auch ein ε-coreset für die Ausgangspunktmenge sein muss.

Theorem 4 (Coresets für k-median) [FS05] Wenn wir ein Orakel voraussetzen, welches
Anfragen an die Anzahl von Punkten in Gitterzellen in konstanter Zeit beantworten kann,
können wir in Zeit O(k · log n · log(∆̃ ·n/ε) · log log(∆̃ ·n)/εd+1) ein ε-coreset der Größe
O(k · log n/εd+1) für k-median berechnen.

Ein entsprechendes Orakel kann in O(n · log(n · ∆̃/ε)) Zeit konstruiert werden. Aus der
Lösung auf dem Coreset kann in Zeit O((k · log n/ε)O(1)) eine (1 + ε)-approximative
Lösung für k-median bestimmt werden.

Ein genauer Vergleich mit sonstigen bekannten Methoden [Har-Peled, Mazumdar 2004]
zeigt, dass für bestimmte, sinnvolle Werte von k,ε und d und sehr große Werte von n unsere
Methode den schnellsten PTAS für das k-median Problem darstellt.

Erweiterungen dieser Methode können analog auch auf die anderen oben genannten Pro-
bleme angewandt werden. Für das euklidische MaxCut-Problem erhalten wir den schnell-
sten bisher bekannten PTAS für große Werte von n.

Theorem 5 (Coresets für k-means) [FS05] Wenn wir ein Orakel voraussetzen, welches
Anfragen an die Anzahl von Punkten in Gitterzellen in konstanter Zeit beantworten kann,
können wir in Zeit O(k · log n · log(∆̃ ·n/ε) · log log(∆̃ ·n)/εd+2) ein ε-coreset der Größe
O(k · log n/εd+2) für k-means berechnen. Aus dem Coreset kann inO(k2k+1 ·ε−2kd−d−2 ·
logk+1 n) Zeit eine (1 + ε)-approximative Lösung für k-means bestimmt werden.

Theorem 6 (Coresets für MaxCut) [FS05] Wenn wir ein Orakel voraussetzen, welches
Anfragen an die Anzahl von Punkten in Gitterzellen in konstanter Zeit beantworten kann,
können wir in Zeit O(k · log n · log(∆̃ ·n/ε) · log log(∆̃ ·n)/εd+1) ein ε-coreset der Größe
O(k · log n/εd+1) für MaxCut berechnen. Aus dem Coreset kann in O(log2 n ·2((1/ε)O(1)))
Zeit eine (1 + ε)-approximative Lösung für MaxCut bestimmt werden.

4 Anwendungen der Coreset-Methode

Dynamische Datenströme. Man kann zeigen, dass für die Berechnung eines Coresets
nur approximative Informationen über schwere Zellen benötigt werden. Ist uns die Menge
aller schweren Zellen gegeben und für jede schwere Zelle eine (1 + ε)-Approximation
der Anzahl der enthaltenen Punkte, so können wir effizient ein Coreset berechnen. Die
Informationen können durch Stichproben von Punkten in den unterschiedlichen Gittern
gewonnen werden. Obwohl dazu die Stichprobengröse in den groben Gittern linear in



der Punktanzahl sein muss, kann die Information, wieviele Stichprobenpunkte in den ver-
schiedenen Zellen enthalten sind, in polylogarithmischem Platz gespeichert werden. Dies
ermöglicht uns, mit Hilfe der zuvor beschriebenen Sampling - Techniken Datenstromal-
gorithmen für Clusteringprobleme zu entwerfen:

Theorem 7 [FS05] Gegeben sei eine Sequenz von Einfüge- und Löschoperationen von
Punkten des diskreten Raumes {1, . . . ,∆}d in eine Menge Q. Es gibt einen Datenstro-
malgorithmus, der zu jedem Zeitpunkt mit Wahrscheinlichkeit 1 − ψ ein ε-coreset für k-
median, k-means, und MaxCut aufrechterhält. Die Datenstruktur benötigt für k-median
Õ(k·log6(∆)·log(∆/ψ)/εd+3) Speicherbits, für k-means Õ(k·log6(∆)·log(∆/ψ)/εd+4)
Speicherbits und für MaxCut Õ(log6(∆) · log(∆/ψ)/εd+3)) Speicherbits.

Einfüge- und Löschoperationen können in Õ(k · log6(∆) · log(∆/ψ)/εd+3) Zeit für k-
median bearbeitet werden, in Õ(k · log6(∆) · log(∆/ψ)/εd+4) Zeit für k-means und in
Õ(log6(∆) · log(∆/ψ)/εd+3)) Zeit für MaxCut.

Für Datenströme, die keine Löschoperationen enthalten, werden in der Dissertation wei-
terhin deutlich bessere Zeit- und Speicherschranken bewiesen [FS05].

Parallele Berechnung von k-means Lösungen. Unsere Coreset-Technik kann sehr ef-
fizient auf parallelen Rechensystemen implementiert werden. Die Punkte werden auf ver-
schiedene Maschinen verteilt. Nach der parallelen Berechnung der Gitterstatistiken der
verschiedenen Teilmengen können die Statistiken auf einem Computer gesammelt wer-
den, um daraus eine Gitterstatistik für die gesamte Punktmenge zu berechnen. Aus dieser
gesamten Gitterstatistik kann dann das Coreset effizient ermittelt werden.

Eine so implementierte k-means-Methode benötigt nur eine Kommunikationsrunde des
parallelen Systems. Die Menge der ausgetauschten Information ist logarithmisch in der
Punktanzahl, was die Methode sehr gut anwendbar macht für sehr große verteilte Daten-
mengen.

Kinetische Datenstrukturen. Auch auf sich bewegende Punktmengen kann die Coreset-
Technik angewandt werden. Vor der Veröffentlichung unseres folgenden Resultats war
nicht klar, ob Ω(n2) Berechnungen benötigt werden, um MaxCut-Clusterings von n Punk-
ten unter linearen Bewegungen aufrechtzuerhalten. Wir zeigen, dass eine Aufrechterhal-
tung deutlich effizienter in fast linearer Zeit möglich ist. Wir gehen davon aus, dass das
Resultat auch auf k-median und k-means - Clusterings übertragbar ist.

Theorem 8 Es existiert eine kinetische Datenstruktur, die mit Wahrscheinlichkeit 1 − ψ
eine (1 + ε)-Approximation des Euclidean MaxCut problems aufrechterhält. Die Daten-
struktur beantwortet Anfragen der Form ”Auf welche Seite des Schnittes gehört ein Punkt
p?“ in O(log2 n · log log n · ε−2(d+1) · 21/εO(1)

) Zeit. Unter linearer Bewegung behandelt
die Datenstruktur Õ(n log(ψ−1)

εd+3 ) Ereignisse, jedes in O(log2 n) Zeit. Ein Flugplanupda-

te eines Punktes kann in Õ( log4 n·log(ψ−1)
εd+3 ) mittlerer erwarteter Zeit beantwortet werden,

wobei über die Worst Case Updatezeiten der Punkte an beliebigen Zeitpunkten gemittelt
wird. Die Datenstruktur benötigt erwartete Setup-Zeit Õ(n·log(ψ−1)

εd+3 ).



5 Implementierungsresultate

In der Praxis werden zum Clustering von Punktmengen häufig iterative Algorithmen wie
Lloyd’s Algorithmus (auch k-means-Algorithmus genannt) eingesetzt. Die von uns vorge-
stellte Coreset-Technik kann hier helfen, deutliche Geschwindigkeitssteigerungen zu errei-
chen. Wir betrachten als Beispiel den Algorithmus KM-Hybrid, welcher in jeder Iteration
entweder einen k-Means-Schritt ausführt oder zufällige Veränderungen des Clusterings
vornimmt, um ein Festsetzen in lokalen Minima des k-means Algorithmus zu vermeiden.

Da die ersten Schritte iterativer Algorithmen nur eine begrenzte Genauigkeit der Punkt-
menge benötigen, können wir zuerst die Punktmenge durch das Coreset auf ein Mindest-
maß komprimieren. Die ersten Iterationen können so in einem Bruchteil der sonst benötig-
ten Zeit ausgeführt werden. Durch sukzessives Vergrößern des Coresets wird erreicht, dass
die Approximation der Punktmenge auch für spätere Iterationen genau genug ist.

Wir geben Implementierungsresultate an, in denen wir unseren Algorithmus (genannt Co-
reMeans) mit verschiedenen Implementierungen von David Mount vergleichen, welche
als äußerst schnell anerkannt sind. Als Testinstanzen dienen große digitale Fotos (bei
denen jeder Pixel einen Punkt im dreidimensionalen Farbraum repräsentiert) und künst-
lich erzeugte normalverteilte Instanzen. In allen Experimenten erreicht unser CoreMeans-
Algorithmus gute Clusteringwerte deutlich schneller als die Vergleichsalgorithmen [FS06].
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Abbildung 1: Vergleich für das Bild ”PaSCo“ mit k = 50 centern. Genauere Resultate in Dissertation

6 Zählen von Teilgraphen in Datenströmen

Am Schluss der Dissertation beschäftigen wir uns mit dem Problem, die Anzahl bestimm-
ter Teilgraphen in großen Graphen zu zählen. Sie gibt häufig Aufschluss über die Struktur
des Graphen. Durch ein Zählen der Teilgraphen in großen Graphen wie dem Webgraph



können durch Vergleiche mit theoretischen Vorhersagen verschiedene Modelle bewertet
werden, welche die Konstruktion des Webgraphen beschreiben. Das Zählen von Teilgra-
phen gestaltet sich schwierig, weil traditionelle Algorithmen den gesamten Graphen im
Speicher halten müssen und oft auf Graphen mit n Knoten Ω(n2) Zeit verbrauchen. Dies
ist auf großen Graphen wie dem Webgraph nicht anwendbar. Wir stellen daher neue Algo-
rithmen vor, die die Anzahl von Teilgraphen (vollständige Cliquen wie Dreiecke, bipartite
Cliquen) approximativ schätzt [BFL+06]. Die Algorithmen arbeiten auf Datenströmen
von Kanten und sind daher auch für äußerst große Graphen anwendbar.
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