Algorithmen fiir dynamische geometrische Datenstrome

Gereon Frahling

Google Research
76 Ninth Avenue
New York, NY 10011
gereon @google.com

Abstract: Die zunehmende Vernetzung moderner Computersysteme produziert ge-
waltige Datenmengen, deren Behandlung die heutige Informatik vor unzéhlige Proble-
me stellt. Traditionelle Algorithmen, deren Laufzeit zu stark von der Grofie der Daten
abhingt, sind héufig nicht anwendbar. Oft sind die Eingabedaten sogar zu grof3 fiir die
verfiigbaren Speichermedien. Wir stellen neue, grundlegende Algorithmen zur Analy-
se gewaltiger Datenmengen vor, die unter minimalen Anforderungen an den Speicher
der Computersysteme beweisbar gute Zusammenfassungen der Daten berechnen.
Zunichst erarbeiten wir grundlegende Ergebnisse zum Ziehen von Stichproben aus
dynamischen Datenstromen. Mit Hilfe dieser Stichproben konnen vielfiltige Aussagen
iiber die Eingabedaten getroffen werden, was wir anhand von Beispielen beweisen.
Anschliefend wenden wir uns dem Clustering gewaltiger Datensétze zu. Wir ent-
wickeln eine Methode, grofe Datenmengen zu sogenannten Coresets zusammenzufas-
sen. Die Methode erzeugt beweisbar k-means- und k-median-Clusterings mit beliebig
guter Approximationsgarantie und ist anwendbar in vielen verschiedenen Modellen:
Die Clusterings konnen mit wenig Speicher fiir dynamische Datenstrome berechnet
werden, sie lassen sich in sublinearer Zeit durch Bereichsanfragen erstellen, und auch
sich bewegende Punkte konnen effizient zusammengefasst werden. Eine Implemen-
tierung zeigt, dass die Methode auf groen realen Testdaten gute Clusterings deutlich
schneller berechnen kann als hidufig angewendete traditionelle Algorithmen.
SchlieBlich beschiftigen wir uns mit der Analyse der Struktur von grolen Graphen
wie dem Webgraph. Wir entwickeln neue Methoden, um die Anzahl von Teilgraphen
(z.B. Dreiecken) eines Graphen zu zihlen, der als Datenstrom von Kanten gegeben ist.

1 Einfiihrung

Einer ausfiihrlichen Studie der Universitdt Berkeley zufolge [Lyman and Varian 2003]
wurden im Jahr 2002, dem letzten Jahr, fiir welches solche Daten vorliegen, etwa 23 Exa-
bytes (d.h. 23 Millionen Terabytes) an Informationen erzeugt. Nur etwa 20% dieser Infor-
mation konnen auf Papier oder magnetischen und optischen Speichermedien gespeichert
werden. Der Grofteil jedoch wird nach der Erzeugung iiber Datenkanile geschickt und
daraufhin sofort wieder verworfen.

Neben Telefon-, Radio- und Fernsehsignalen bestehen diese vergessenen Daten vor al-
lem aus Informationen iiber Internetverbindungen. Ein Beispiel ist der Internetverkehr an
einem groflen Backbone Router. Selbstverstindlich ist der Router nicht in der Lage, al-
le von ihm verarbeiteten Pakete lokal zu speichern. Dennoch ist es aus vielen Griinden

ratsam, Statistiken {iber die verarbeiteten Pakete aufrechtzuerhalten, um spéter daraus
Riickschliisse auf den gesamten Internetverkehr zu ziehen. Datenstromalgorithmen versu-
chen daher, die Daten sequentiell in ihrer Reihenfolge zu lesen und dabei nur eine kleine
Zusammenfassung zu speichern. Da von ihren Resultaten hiufig wichtige Entscheidun-
gen abhiingen (Einfiihrung neuer Backbones, Andern von Netzwerkstruktur), sind Daten-
stromalgorithmen erforderlich, die Zusammenfassungen mit beweisbar hoher Genauigkeit
aufrechterhalten.

Selbst fiir den GrofBteil der gespeicherten Daten sind Datenstromalgorithmen in vielen
Fillen sinnvoll. GemaB der oben zitierten Studie werden 90% der gespeicherten Daten
auf Festplatten gehalten, von denen sie in hoher Geschwindigkeit nur sequentiell wieder
ausgelesen werden konnen.

In meiner Dissertation [Fra06] stelle ich neue, grundlegende Algorithmen vor, um Statis-
tiken in solchen Szenarien aufrechtzuerhalten. Die Algorithmen arbeiten mit wenig Spei-
cher und kénnen wihrend des Lesens eines grolen Datenstromes uniforme Stichproben
und kompliziertere Strukturen wie e-Nets oder sogar komplette Clusterings der Daten auf-
rechterhalten. Fiir alle Algorithmen werden beliebig gute Approximationsgarantien bewie-
sen. Aufgrund ihrer Allgemeinheit sind die Algorithmen in unzdhligen Bereichen einsetz-
bar.

2 Dynamische Datenstrome

Im GroBteil dieser Arbeit gehen wir von dem allgemeinen Modell der dynamischen Daten-
strome aus. Ein solcher Datenstrom besteht aus Einfiige- und Loschoperationen von Ele-
menten in eine (Multi-)Menge @, die im allgemeinen zu groB ist, um sie zu speichern. Um
Aussagen iiber die Struktur dieser grolen Menge zu treffen, brauchen wir Informationen
iiber die Beziehungen zwischen einzelnen Elementen, vor allem iiber deren Ahnlichkeiten
und Unterschiede. Da das Berechnen von Unterschieden aller Paare von Elementen nicht
moglich ist, wird in der Praxis hédufig eine Distanzfunktion zwischen solchen Paaren im-
plizit definiert: Zuerst bildet man alle Elemente aus () durch eine Abbildung o : Q — R¢
auf Punkte in einem d-dimensionalen Raum ab. Die Distanz zwischen zwei Elementen
p,q € @ wird dann durch den euklidischen Abstand d(a(p), a(¢)) bestimmt. Der dyna-
mische Datenstrom von Einfiige- und Loschoperationen von Elementen in Q transformiert
sich somit in einen Datenstrom aus Einfiige und Loschoperationen von Punkten aus R9.

Dynamische Geometrische Datenstrome. Unser Modell geht daher aus von einem Da-
tenstrom, der aus m Einfiige- und Loschoperationen von Punkten des diskreten euklidi-
schen Raumes {1, ..., A}d in eine dynamische (Multi-)Menge () besteht. Die Zeit- und
Platzkomplexitit aller unserer Algorithmen wird nur polylogarithmisch von A abhingen.

Uniforme Stichproben aus dynamischen Datenstréomen. Wir beantworten zunéchst
die Frage, wie man effizient uniforme Stichproben aus der Menge () erhilt. Die Schwierig-
keit liegt hier darin, dass die Menge unter vielen Einfiigeoperationen stark wachsen kann.
Schrumpft sie anschlieBend durch Loschoperationen wieder auf eine kleine Anzahl von

Elementen, miissen wir diese wenigen Elemente exakt bestimmen kénnen. Wir stellen ver-
schiedene Methoden vor, um wihrend des gesamten Datenstromes uniforme Stichproben
der Menge (Q aufrechtzuerhalten. Unser Algorithmus benétigt dazu nur eine Anzahl von
Speicherbits, die polylogarithmisch in der GroBe des Datenstromes ist. Auch die Zeit, die
benétigt wird, um eine Einfiige- und Loschoperation zu verarbeiten, ist polylogarithmisch
in der GroBe des Datenstromes. Unter mehreren Ergebnissen zum Ziehen von Stichproben
aus dynamischen Datenstromen mochte ich eines exemplarisch angeben:

Theorem 1 [FISO5] Gegeben sei eine Sequenz von Einfiige- und Loschoperationen von
Punkten des diskreten Raumes {1, ..., A} in eine Menge Q. Es existiert eine Datenstruk-
tur, die zu jedem Zeitpunkt des Datenstromes mit Wahrscheinlichkeit 1 — 6 eine Stichprobe
von s Punkten rq,...,rs_1 € Q zuriickgibt und mit Wahrscheinlichkeit § einen Riickga-
bewert F AIL. Die zuriickgegebenen Samples sind unabhiingig voneinander gezogen und
konnen daher Duplikate beinhalten. Die statistische Differenz zwischen der Verteilung ei-
nes dieser Samples und einer uniformen Verteilung ist hochstens %, d.h. insbesondere
auch Pr[r; = p| = ﬁ + %fb’irjedesp € Q.

Der Algorithmus arbeitet mit héchstens O ((s + log(1/6)) - d* - log? (A/6)) Speicher-
bits.

In der Dissertation werden weiterhin viele Verallgemeinerungen und Spezialisierungen
der Sampling-Technik betrachtet. Unabhingig von unserer Veroffentlichung [FISO5] wur-
de ein dhnliches Ergebnis auch von [Cormode, Muthukrishnan und Rozenbaum 2005]
erreicht. Diese zwei parallelen Verdffentlichungen bilden inzwischen die Grundlage fiir
die approximative Losung vieler Probleme auf dynamischen Datenstromen.

Anwendungen der Stichproben. Wir mochten nun exemplarisch einige direkte Anwen-
dungen des Samplings in Datenstromen angeben. Das Aufrechterhalten von Samples gibt
uns beispielsweise die Moglichkeit, zu jedem Zeitpunkt des Datenstromes Anfragen iiber
die Verteilung der Objekte in der aktuellen Menge () (z.B. ,,Wieviele Punkte sind in fol-
gendem Rechteck enthalten?*) approximativ zu beantworten. Solche Anfragen haben ein
sehr breites Anwendungsfeld in Datenbanken, der Analyse von Internetverbindungen und
unzihligen anderen Bereichen. In den Jahren seit den zwei parallelen Veroffentlichungen
tiber Stichproben in Datenstromen wurden beispielsweise von Telefonunternehmen grofie
Systeme gebaut, die diese Techniken einsetzen, um Statistiken iiber den Telefon- und Da-
tenverkehr zu erstellen.

Definition 2.1 (Bereichsriume, VC-Dimension) Sei X eine Menge von Objekten und R
eine Familie von Untermengen von X. Wir nennen dann das System ¥ = (X, R) einen
Bereichsraum (range space). Die Elemente aus R heifien Bereiche von Y. Falls X eine
endliche Menge ist, dann heifit 3 endlicher Bereichsraum.

Wir sagen, dass A C X vollstindig von R zerteilt wird, falls {A N r|r € R} = 24. Die
Vapnik-Chervonenkis-Dimension (VC-Dimension) des Bereichsraumes ¥ = (X, R) ist
die Grifie der grofiten Teilmenge von X, die vollstindig von R zerteilt wird.

Ein Beispiel fiir einen Bereichsraum ist die Menge aller achsenparallelen Rechtecke. Man
kann zeigen, dass ihre VC-Dimension genau 4 ist.

Definition 2.2 (e-Netze, e-Approximationen) Sei ¥ = (X, R) ein endlicher Bereichs-
raum. Eine Teilmenge N C X heifit e-Netz, falls NNr # () fiir jedes r € R mit |r| > €| X]|.

|ANr| |7 <
— TvT €.
[Al |X\| =

A C X heifsit e-Approximation, falls fiir jedes r € R gilt: |

Haben wir eine e-Approximation einer Punktmenge, so konnen wir nach dem Einlesen
des Datenstromes beispielsweise Anfragen iiber den Anteil der Punkte in einem gegebe-
nen Rechteck bis auf einen beliebig kleinen Fehler e approximativ beantworten. Dies gilt
fiir alle Anfragen iiber den Anteil der Punkte in Bereichen mit kleiner VC-Dimension.
Mit Hilfe unserer Stichprobentechnik kann man solche e-Approximationen und e-Netze
effizient in dynamischen Datenstromen aufrechterhalten:

Theorem 2 [FISO5] Gegeben sei eine Sequenz von Einfiige- und Loschoperationen von
Punkten des diskreten Raumes {1, ... A} in eine Menge Q und ein Bereichsraum (X, R)
der VC-Dimension D. Es existiert eine Datenstruktur, die zu jedem Zeitpunkt des Daten-
stromes mit Wahrscheinlichkeit 1 — § eine Menge A von 5(%2(1/5)) Punkten zuriick-
gibt, die eine e-Approximation von (X, R) ist. Der Algorithmus arbeitet mit hiochstens
O (6% (D log % + log %) d?log® %) Speicherbits.

Weiterhin existiert ein Algorithmus, der zu jedem Zeitpunkt mit Wahrscheinlichkeit 1 —6 ei-
ne Menge N von 5(%(1/5)) von Punkten zuriickgibt, welche ein e-Netz von (X, R) ist.

Der Algorithmus benutzt hichstens O ((M +Llog2).a?- log? (A/5)> Speicher-
bits.

Als weitere Anwendung zeigen wir in der Dissertation, wie der Wert eines minimalen
Spannbaumes, der alle momentanen Punkte der Menge () verbindet, effizient geschitzt
werden kann, wenn die Punkte als dynamischer Datenstrom gegeben sind. Der Wert des
minimalen Spannbaumes konnte beispielsweise Aufschluss geben iiber die benotigte Ener-
gie einer Kommunikationsstruktur, die alle Punkte verbindet.

Theorem 3 [FISO5] Gegeben sei eine Sequenz von Einfiige- und Loschoperationen von
Punkten des diskreten Raumes {1,. .., A}? in eine Menge Q. Es gibt einen Datenstromal-
gorithmus, der zu jedem Zeitpunkt mit Wahrscheinlichkeit 1 — ¢ eine (14 ¢€)-Approximation
des Wertes des euklidischen minimalen Spannbaumes von @) bestimmt. Der Algorithmus
benotigt hiichstens O(log®(1/6) - (log(A)/€)OD) Speicherbits.

3 Die Coreset - Methode

Wir wenden uns nun dem Problem des Clusterings groer Datenmengen zu. Das Problem,
Daten zu sinnvollen Einheiten zusammenzufassen, gehort zu den am meisten untersuch-
ten Optimierungsproblemen iiberhaupt und ist hdufig der erste Schritt, die Struktur grofler
Datenmengen zu verstehen. Ein sinnvolles Zusammenfassen der Datenelemente kann wei-
terhin die Datenmenge auf ein Maf} reduzieren, welches die Ausfiihrung verschiedener
aufwindiger Algorithmen erst ermoglicht.

Wir beschiftigen uns unter anderem mit dem wohl beliebtesten Clustering-Verfahren, dem
k-means Clustering. Wir zeigen erstmals eine Methode, eine (1-+¢)-approximative Losung
der k-means Zielfunktion aufrechtzuerhalten, wenn die Punkte als dynamischer Daten-
strom gegeben sind. Dies fiihrt direkt zu der Moglichkeit, sinnvolle Zusammenfassungen
riesiger Datenmengen zu erstellen, ohne die Daten selbst jemals speichern zu miissen.

Unsere Methode berechnet aus der riesigen Eingabepunktmenge eine sehr kleine gewich-
tete Punktmenge, das sogenannte Coreset. Dabei stellt sie sicher, dass auf dem Coreset
berechnete Clusteringlésungen immer auch (1 + €)-approximative Clusteringlosungen fiir
die Ausgangsmenge sind.

Definitionen der Probleme und Begriffe. Wir definieren zunichst einige hiufig ver-
wendete Clustering-Zielfunktionen. Als Eingabe setzen wir eine endliche gewichtete Punkt-
menge P C R? und eine Funktion der Punktgewichte w : P — R voraus. Wir bezeich-
nen mit d(p, ¢) den Euklidischen Abstand zwischen zwei Punkten p, ¢ € R?.

Definition 3.1 Das k-median Clusteringproblem fragt nach einer Menge C = {c1, ..., ¢k}
von k Clusterzentren in R? und einer Partition der Punkte P in k Cluster C1, . ..,Cy, so
dass Median(P,C,C1,...,Cy) = Zle > pec, W(p) - d(p, ;) minimiert wird. In der
ungewichteten Version des Problems sind alle Punktgewichte 1. Fiir den Fall, dass die
Fartition C1, ..., Cy jeden Punkt dem néichsten Clusterzentrum zuordnet, definieren wir
die Kurzschreibweise Median(P,C) := Median(P,C,C,...,Cy).

Das k-means Clusteringproblem fragt nach einer Menge von Clusterzentren und einer
Fartition, so dass Means(P,C,Cy,...,Cy) := Zle > pec, w(p) - d*(p, c¢;) minimiert
wird.

Das MaxCut Clusteringproblem fragt nach einer Partition der Punkte in zwei Mengen S
und T, so dass Y . s > _,c1 d(p, q) maximiert wird.

In der Dissertation zeigen wir, dass relativ schwache Anforderungen an ein Problem aus-
reichen, um es mit unserer Coreset-Methode effektiv zu approximieren. Beispiele fiir Pro-
bleme, die diese Voraussetzungen erfiillen, sind neben den oben definierten Problemen
auch Average Distance, MaxMatching, und Maximum Travelling Salesman.

Definition 3.2 (Coresets) Sei P eine gewichtete Menge von n Punkten in RY. Eine ge-
wichtete Punktmenge P,y in R? heifit e-coreset fiir P (bzgl. des k-median problems),
wenn fiir jede Menge C von k Zentren gilt:

(1 —¢€) - Median(P,C) < Median(Peore, C) < (1 + €) - Median(P,C) .

Wir definieren ein Coreset fiir P bzgl. des k-means-Problems analog.

Die genaue Definition von Coresets fiir das MaxCut Problem ist etwas komplizierter. Co-
resets fiir das MaxCut-Problem sind gewichtete Punktmengen mit einer zugehorigen Ab-
bildung v : P — P,,,.. Wir verlangen, dass das Gewicht eines jeden Coresetpunktes dem
Gewicht der abgebildeten Punkte entspricht und dass fiir jede Partition der Punktmenge
die MaxCut-Zielfunktion approximiert wird durch die MaxCut-Zielfunktion der entspre-
chenden Partition der Coresetmenge. Eine genaue Definition (auch fiir Average Distance,

Maximum Matching, Maximum Travelling Salesman und verallgemeinerte Probleme) ist
in der Dissertation nachzulesen.

Beschreibung der Coreset-Methode anhand von k-Median. Wir nehmen an, dass alle
Punkte in einem Wiirfel der Seitenlinge 1 liegen, zum Beispiel [0, 1]¢. Dies kann durch
einfaches Skalieren der Punktmenge erreicht werden. Weiterhin nehmen wir an, dass die
optimale Zielfunktion des Problems mindestens den Wert 1/A besitzt. Wir benétigen hier
nur eine sehr schwache Schranke an E, da der von unserer Methode benutzte Speicher und
Platz nur logarithmisch von A abhingen wird.

Unsere Methode betrachtet Z verschieden groBe Gitter Gy, . . ., Gz (fiir einen Parameter
Z = O(d -log(k - n - d - A))). Die ZellgroBe einer Gitterzelle des Gitters G; ist o-. Jede
Zelle in G; besteht daher aus 2¢ Zellen des Gitters G; 1.

Unser Ziel ist es, in jedem Gitter die schweren Zellen zu identifizieren. Dies sind Zellen,
die mehr als eine bestimmte Anzahl von Punkten enthalten. Wir parametrisieren diese
Schranke durch einen Parameter §, den wir spiter exakt festsetzen werden.

Definition 3.3 (Schwere Zellen) Wir nennen eine Zelle des Gitters G; schwer, wenn sie
mindestens § - 2° Punkte enthdilt.

Unsere Methode besteht aus zwei Phasen. In einer ersten Phase berechnen wir die Core-
setpunkte. In der zweiten Phase bestimmen wir das Gewicht der Coreset-Punkte.

Der Algorithmus der ersten Phase startet mit dem grobsten Gitter Gy. Er identifiziert alle
schweren Zellen in G (Das Gitter Gy besteht im Grunde nur aus einer schweren Zelle, die
die gesamte Punktmenge umfasst). Danach wendet er folgende iterative Methode auf allen
Gitterstufen an. Nehmen wir an, der Algorithmus hat die schweren Zellen im Gitter G;
identifiziert. Er zerteilt nun iterativ jede schwere Zelle C € G; in 27 quadratische Unterzel-
len des Gitters G; ;1. Wir nennen C dann die Mutterzelle dieser Unterzellen. Wenn keine
dieser Unterzellen schwer ist, fiihrt der Algorithmus einen Coreset-Punkt im Mittelpunkt
der Zelle ein. Andernfalls werden in der nichsten Iteration die schweren Unterzellen wei-
ter unterteilt. Die Unterteilung stoppt in jedem Fall, da zu einem bestimmten Zeitpunkt
eine schwere Zelle mehr als n Punkte enthalten miisste.

In der zweiten Phase bestimmt der Algorithmus das Gewicht der Coresetpunkte. Wir
konnen uns diese zweite Phase vorstellen als eine Zuordnung von Punkten der Ausgangs-
punktmenge zu den entsprechenden Coreset-Punkten. Das Gewicht eines Coresetpunktes
entspricht dann der Anzahl der zugeordneten Punkte aus der Eingangspunktmenge P. Der
Algorithmus ordnet die Punkte den Coresetpunkten so zu, dass jeder Punkt p € P in der
kleinsten schweren Zelle verbleibt, in der er enthalten ist. Da Phase 1 sicherstellt, dass jede
schwere Zelle einen Coresetpunkt enthdlt, ist diese Invariante leicht zu erhalten.

Wir bezeichnen mit P,,,. das vom Algorithmus berechnete Coreset und mit Opt den
besten erreichbaren Zielfunktionswert. In der Dissertation wurden die folgenden Eigen-
schaften bewiesen:

da+1,
Lemma 3.4 Falls 6 < 4.k‘10d,(€1+10g07:’)t'd(d+1)/2, dann ist Py ein e-coreset fiir P beziiglich
. d+1,
des k-median-Problems. Falls § > £ Opt ist die Grofle des Coresets

8-k-104-(1+log n)-d(d+1)/27
P.ore beschrinkt durch O(k - logn/e?t1).

Um ein e-coreset zu berechnen, muss man daher nur noch einen entsprechenden Wert von
0 bestimmen. Dazu kann man eine untere und obere Schranke an die moglichen Werte von
d herleiten. Man testet daraufhin fiir verschiedene Werte von j und § := Jy - 27, ob das
berechnete Coreset die gewiinschte Grée hat. Durch bindre Suche auf den Werten von
7 kann man effizient den kleinsten Wert von j finden, so dass das entsprechende Coreset
die gewiinschte Grofle nicht tiberschreitet. Es ist leicht zu sehen, dass dieses Coreset nach
Lemma 3.4 dann auch ein e-coreset fiir die Ausgangspunktmenge sein muss.

Theorem 4 (Coresets fiir k.-median) [FS05] Wenn wir ein Orakel voraussetzen, welches
Anfragen an die Anzahl von Punkten in Gitterzellen in konstanter Zeit beantworten kann,
konnen wir in Zeit O(k -logn -log(A -n/e) -loglog(A - n) /e?t1) ein e-coreset der Grifse
O(k - logn/e™*) fiir k-median berechnen.

Ein entsprechendes Orakel kann in O(n - log(n - A/€)) Zeit konstruiert werden. Aus der
Lisung auf dem Coreset kann in Zeit O((k - logn/e)®M) eine (1 + €)-approximative
Losung fiir k-median bestimmt werden.

Ein genauer Vergleich mit sonstigen bekannten Methoden [Har-Peled, Mazumdar 2004]
zeigt, dass fiir bestimmte, sinnvolle Werte von k,e und d und sehr grofle Werte von n unsere
Methode den schnellsten PTAS fiir das £-median Problem darstellt.

Erweiterungen dieser Methode konnen analog auch auf die anderen oben genannten Pro-
bleme angewandt werden. Fiir das euklidische MaxCut-Problem erhalten wir den schnell-
sten bisher bekannten PTAS fiir grole Werte von n.

Theorem 5 (Coresets fiir k-means) [FS05] Wenn wir ein Orakel voraussetzen, welches
Anfragen an die Anzahl von Punkten in Gitterzellen in konstanter Zeit beantworten kann,
kinnen wir in Zeit O(k -logn -log(A -n/e) -loglog(A - n) /e?+?) ein e-coreset der Grifie
O(k-logn/e®+?) fiir k-means berechnen. Aus dem Coreset kann in O(k?*+1.e=2kd—d=2.
log"™ n) Zeit eine (1 + €)-approximative Losung fiir k-means bestimmt werden.

Theorem 6 (Coresets fiir MaxCut) [FS05] Wenn wir ein Orakel voraussetzen, welches
Anfragen an die Anzahl von Punkten in Gitterzellen in konstanter Zeit beantworten kann,
konnen wir in Zeit O(k -logn -log(A -n/e) -loglog(A -n)/e?*1) ein e-coreset der Grofie
O(k -log n/e?*) fiir MaxCut berechnen. Aus dem Coreset kann in O(log” n - 2((1/5)0(1)))
Zeit eine (1 + €)-approximative Losung fiir MaxCut bestimmt werden.

4 Anwendungen der Coreset-Methode

Dynamische Datenstrome. Man kann zeigen, dass fiir die Berechnung eines Coresets
nur approximative Informationen iiber schwere Zellen benétigt werden. Ist uns die Menge
aller schweren Zellen gegeben und fiir jede schwere Zelle eine (1 + ¢)-Approximation
der Anzahl der enthaltenen Punkte, so konnen wir effizient ein Coreset berechnen. Die
Informationen konnen durch Stichproben von Punkten in den unterschiedlichen Gittern
gewonnen werden. Obwohl dazu die Stichprobengrose in den groben Gittern linear in

der Punktanzahl sein muss, kann die Information, wieviele Stichprobenpunkte in den ver-
schiedenen Zellen enthalten sind, in polylogarithmischem Platz gespeichert werden. Dies
ermoglicht uns, mit Hilfe der zuvor beschriebenen Sampling - Techniken Datenstromal-
gorithmen fiir Clusteringprobleme zu entwerfen:

Theorem 7 [FS05] Gegeben sei eine Sequenz von Einfiige- und Ldschoperationen von
Punkten des diskreten Raumes {1, ..., A} in eine Menge Q. Es gibt einen Datenstro-
malgorithmus, der zu jedem Zeitpunkt mit Wahrscheinlichkeit 1 — 1 ein e-coreset fiir k-
median, k-means, und MaxCut aufrechterhdlt. Die Datenstruktur bendtigt fiir k-median
O(k-1og®(A)-log(A/1p) /e*+3) Speicherbits, fiir k-means O(k-1og®(A)-log(A /1) /e**)

Speicherbits und fiir MaxCut O(log®(A) - log(A /1) /e*+3)) Speicherbits.

Einfiige- und Loschoperationen kénnen in O(k - log®(A) - log(A /1) /ed+3) Zeit fiir k-
median bearbeitet werden, in O(k - log®(A) - log(A/v)/e?t*) Zeit fiir k-means und in
O(log®(A) - log(A/v) /e?+3)) Zeit fiir MaxCut.

Fiir Datenstrome, die keine Loschoperationen enthalten, werden in der Dissertation wei-
terhin deutlich bessere Zeit- und Speicherschranken bewiesen [FS05].

Parallele Berechnung von k-means Losungen. Unsere Coreset-Technik kann sehr ef-
fizient auf parallelen Rechensystemen implementiert werden. Die Punkte werden auf ver-
schiedene Maschinen verteilt. Nach der parallelen Berechnung der Gitterstatistiken der
verschiedenen Teilmengen konnen die Statistiken auf einem Computer gesammelt wer-
den, um daraus eine Gitterstatistik fiir die gesamte Punktmenge zu berechnen. Aus dieser
gesamten Gitterstatistik kann dann das Coreset effizient ermittelt werden.

Eine so implementierte k-means-Methode benétigt nur eine Kommunikationsrunde des
parallelen Systems. Die Menge der ausgetauschten Information ist logarithmisch in der
Punktanzahl, was die Methode sehr gut anwendbar macht fiir sehr gro3e verteilte Daten-
mengen.

Kinetische Datenstrukturen. Auch auf sich bewegende Punktmengen kann die Coreset-
Technik angewandt werden. Vor der Verdffentlichung unseres folgenden Resultats war
nicht klar, ob £2(n?) Berechnungen benétigt werden, um MaxCut-Clusterings von n Punk-
ten unter linearen Bewegungen aufrechtzuerhalten. Wir zeigen, dass eine Aufrechterhal-
tung deutlich effizienter in fast linearer Zeit moglich ist. Wir gehen davon aus, dass das
Resultat auch auf k-median und k-means - Clusterings iibertragbar ist.

Theorem 8 Es existiert eine kinetische Datenstruktur, die mit Wahrscheinlichkeit 1 —
eine (1 + €)-Approximation des Euclidean MaxCut problems aufrechterhiilt. Die Daten-
struktur beantwortet Anfragen der Form ,Auf welche Seite des Schnittes gehort ein Punkt
p?“in O(log® n - loglogn - e~ 2(d+1) . g1/e2
~ —1
die Datenstruktur O(%) Ereignisse, jedes in O(log® n) Zeit. Ein Flugplanupda-
log* n-log(y 1)
(=)

) Zeit. Unter linearer Bewegung behandelt

te eines Punktes kann in O mittlerer erwarteter Zeit beantwortet werden,

wobei iiber die Worst Case Updatezeiten der Punkte an beliebigen Zeitpunkten gemittelt

~ -1
wird. Die Datenstruktur bendtigt erwartete Setup-Zeit O(%)

5 Implementierungsresultate

In der Praxis werden zum Clustering von Punktmengen héufig iterative Algorithmen wie
Lloyd’s Algorithmus (auch k-means-Algorithmus genannt) eingesetzt. Die von uns vorge-
stellte Coreset-Technik kann hier helfen, deutliche Geschwindigkeitssteigerungen zu errei-
chen. Wir betrachten als Beispiel den Algorithmus KM-Hybrid, welcher in jeder Iteration
entweder einen k-Means-Schritt ausfiihrt oder zufillige Verinderungen des Clusterings
vornimmt, um ein Festsetzen in lokalen Minima des k-means Algorithmus zu vermeiden.

Da die ersten Schritte iterativer Algorithmen nur eine begrenzte Genauigkeit der Punkt-
menge bendtigen, konnen wir zuerst die Punktmenge durch das Coreset auf ein Mindest-
maf} komprimieren. Die ersten Iterationen kdnnen so in einem Bruchteil der sonst benotig-
ten Zeit ausgefiihrt werden. Durch sukzessives Vergrofiern des Coresets wird erreicht, dass
die Approximation der Punktmenge auch fiir spétere Iterationen genau genug ist.

Wir geben Implementierungsresultate an, in denen wir unseren Algorithmus (genannt Co-
reMeans) mit verschiedenen Implementierungen von David Mount vergleichen, welche
als duBerst schnell anerkannt sind. Als Testinstanzen dienen groBe digitale Fotos (bei
denen jeder Pixel einen Punkt im dreidimensionalen Farbraum représentiert) und kiinst-
lich erzeugte normalverteilte Instanzen. In allen Experimenten erreicht unser CoreMeans-
Algorithmus gute Clusteringwerte deutlich schneller als die Vergleichsalgorithmen [FS06].

Objective
700
—— KMLocalHybrid
600
——— CoreMeans

500 ¢

400 +

300

200 b T o

100 ¢

Abbildung 1: Vergleich fiir das Bild ,,PaSCo™ mit k = 50 centern. Genauere Resultate in Dissertation

6 Zihlen von Teilgraphen in Datenstromen

Am Schluss der Dissertation beschiftigen wir uns mit dem Problem, die Anzahl bestimm-
ter Teilgraphen in groen Graphen zu zihlen. Sie gibt hdufig Aufschluss iiber die Struktur
des Graphen. Durch ein Zihlen der Teilgraphen in groBen Graphen wie dem Webgraph

konnen durch Vergleiche mit theoretischen Vorhersagen verschiedene Modelle bewertet
werden, welche die Konstruktion des Webgraphen beschreiben. Das Zihlen von Teilgra-
phen gestaltet sich schwierig, weil traditionelle Algorithmen den gesamten Graphen im
Speicher halten miissen und oft auf Graphen mit 7 Knoten Q2(n?) Zeit verbrauchen. Dies
ist auf groBen Graphen wie dem Webgraph nicht anwendbar. Wir stellen daher neue Algo-
rithmen vor, die die Anzahl von Teilgraphen (vollstindige Cliquen wie Dreiecke, bipartite
Cliquen) approximativ schitzt [BFLT06]. Die Algorithmen arbeiten auf Datenstromen
von Kanten und sind daher auch fiir d&uBerst grofe Graphen anwendbar.

Literatur

[BFLT06] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela
und Christian Sohler. Counting triangles in data streams. In Proc. of the 25th ACM
Symposium on Principles of database systems (PODS), Seiten 253-262, 2006.

[FISO5] Gereon Frahling, Piotr Indyk und Christian Sohler. Sampling in dynamic data streams
and applications. In To appear in International Journal of Computational Geometry
an Applications (IJCGA) (invited Paper). Preliminary version also in Proc. 21st ACM
Symposium on Computational Geometry (SoCG 2005), Seiten 142—149, 2005.

[Fra06] Gereon Frahling. Algorithms for Dynamic Geometric Data Streams. Dissertation, Uni-
versitit Paderborn, 2006.

[FSO05] Gereon Frahling und Christian Sohler. Coresets in dynamic geometric data streams.
In Proc. of the 37th annual ACM symposium on Theory of computing (STOC), Seiten
209-217, 2005.

[FS06] Gereon Frahling und Christian Sohler. A fast k-means implementation using coresets. In
To appear in International Journal of Computational Geometry an Applications (IJCGA)
(invited Paper). Preliminary version also in Proc. 22nd ACM Symposium on Computa-
tional Geometry (SoCG 2006), Seiten 135-143, 2006.

Gereon Frahling wurde am 8. Oktober 1976 in Ko6ln geboren.
Nach dem Abitur 1996 studierte er von 1997 bis 2002 Mathe-
matik an der Universitit Koln, wo er 2002 seinen Abschluss als
Diplom-Mathematiker erhielt. Von 1998-2001 war er zudem bei
der Denkwerk GmbH hauptverantwortlich fiir die Entwicklung
des Internet-Dienstes ,,Oneview*, der 1999 den deutschen Mul-
timediaaward in Silber und die ,,Silver World Medal”“ bei den
,»New York Festivals Interactive Multimedia“ gewann. Nach ei-
nem Jahr als wissenschaftlicher Mitarbeiter an der Universitit
Freiburg erhielt er 2003 ein Stipendium des PaSCo Graduierten-
kollegs an der Universitidt Paderborn. 2006 promovierte Gereon
Frahling mit dem Thema ,,Algorithms for Dynamic Geometric Data Streams™ und arbei-
tet seitdem als Post-Doc in der Forschungsabteilung von Google Inc. in New York. Seine
Forschungstitigkeiten konzentrieren sich auf die effiziente Behandlung sehr grofler Da-
tenmengen. Die Ergebnisse seiner Dissertation und Folgeergebnisse haben direkte An-
wendungen in der Analyse groer Mengen von Webseiten und Nachrichtenartikeln.

